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Questions and challenges

Questions

Assume initial wavefunction lies on the upper level:

1 How large is the transition probability onto the lower?
2 What is the precise form of the transmitted wavefunction?
3 What happens to the transmitted wavepacket?

Challenges

Due to the presence of a small parameter ε =
√
me/mn:

Wavefunctions are rapidly oscillating
(typical frequency 1/ε);

Transmitted wavepacket is exponentially small
(in 1/ε and the gap);

Requires very high accuracy numerics.

Aim

Compute the transmitted wavepacket using only single-level
(Born-Oppenheimer) dynamics.
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The role of ε (Chemistry/Maths scalings)

For Nn nuclei with positions xn and Ne electrons with positions
xe,

i~∂tψ(xn,xe, t) = Hψ(xn,xe, t),

with

H = − ~2

2mn
∆xn −

~2

2me
∆xe + Vn(xn) + Ve(xe) + Vn,e(xn,xe).

Vn = Coulomb repulsion between nuclei.
Ve = Coulomb repulsion between electrons.
Vn,e = Coulomb attraction between nuclei and electrons.
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The two-band Schrödinger equation

Two-level system with one degree of freedom:

iε∂t

(
ψ1(x, t)
ψ2(x, t)

)
=

(
−ε

2

2
∂2xI + V (x) + d(x)I

)(
ψ1(x, t)
ψ2(x, t)

)
, with

V (x) = ρ(x)

(
cos
(
θ(x)

)
sin
(
θ(x)

)
sin
(
θ(x)

)
− cos

(
θ(x)

)) .
I is the 2× 2 unit matrix, x the nuclear separation.

Assume ρ ≥ δ > 0; an avoided crossing with gap at least 2δ.

δ should be small and independent of ε.

Nuclei move a distance of order one in a time of order one.
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Adiabatic representation

For

U0(x) =

(
cos
(
θ(x)/2

)
sin
(
θ(x)/2

)
sin
(
θ(x)/2

)
− cos

(
θ(x)/2

)) , ψa(x, t) = U0(x)ψ(x, t),

we obtain
iε∂tψa(x, t) = H0ψa(x, t), with

H0 = U0HU
∗
0 = − ε2

2 ∂
2
xI +

(
ρ(x) + d(x) + ε2 θ

′(x)2

8 − ε θ
′(x)
2 · (ε∂x)− ε2 θ

′′(x)
4

ε θ
′(x)
2 · (ε∂x) + ε2 θ

′′(x)
4 −ρ(x) + d(x) + ε2 θ

′(x)2

8

)
.

To leading order, the dynamics
decouple: Born-Oppenheimer
approximation.

Couplings given to first order by
the first off-diagonal terms;
semiclassical wavefunctions
oscillate with frequency 1/ε.
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What do typical dynamics look like?
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Superadiabatic representations

We need a better representation than the adiabatic one.

Idea: Find a unitary transformation Un such that ψn = Unψ
solves (to leading order in ε)

iε∂tψn =

(
− ε2

2 ∂
2
x + ρ(x) + d(x) εn+1K+

n+1

εn+1K−n+1 − ε2

2 ∂
2
x − ρ(x) + d(x)

)
ψn.

Un is known to exist, but is basically impossible to apply
numerically.

However, we can find the coupling elements Kn (which are
differential operators) via a (complicated) recursion.

Approximation: Keep only the leading term corresponding to
the highest derivative in Kn.

Justified rigorously for high momentum. How well does this
work in general?
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What does a typical transition look like?
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Explicit formula

For any semiclassical φ

ψ̂−n
ε
(k, t) ≈ e−

i
ε
tĤ− η

∗ + k

2|η∗|
e−

τc
2δε |k−η

∗| e−i
τr
2δε (k−η

∗) φ̂ε(η∗)χk2>4δ

Independent of n, uses only local information.

Nonadiabatic transitions decouple in momentum space.

η∗ = sgn(k)
√
k2 − 4δ is the classical incoming momentum

for outgoing momentum k due to energy conservation.

χk2>4δ is also from energy conservation.

τ = τr + iτc = 2
∫ qc
0 ρ(z)dz with qc the complex zero of ρ

closest of the real line. Contributes a Landau-Zener factor,
causing the exponential smallness in ε.

k −
√
k2 − 4δ ≈ 2δ/k, so larger momentum wavepackets are

more likely to make the transition.

For large momentum, small momentum uncertainty, gives
Landau-Zener transition probability.
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tĤ− η

∗ + k

2|η∗|
e−

τc
2δε |k−η

∗| e−i
τr
2δε (k−η

∗) φ̂ε(η∗)χk2>4δ

Independent of n, uses only local information.

Nonadiabatic transitions decouple in momentum space.

η∗ = sgn(k)
√
k2 − 4δ is the classical incoming momentum

for outgoing momentum k due to energy conservation.

χk2>4δ is also from energy conservation.

τ = τr + iτc = 2
∫ qc
0 ρ(z)dz with qc the complex zero of ρ

closest of the real line. Contributes a Landau-Zener factor,
causing the exponential smallness in ε.

k −
√
k2 − 4δ ≈ 2δ/k, so larger momentum wavepackets are

more likely to make the transition.

For large momentum, small momentum uncertainty, gives
Landau-Zener transition probability.

9 / 19



Explicit formula

For any semiclassical φ

ψ̂−n
ε
(k, t) ≈ e−

i
ε
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Algorithm

1 Evolve initial wave packet on upper level using B-O
dynamics until centre of mass reaches the transition point.

2 Apply formula to the wave packet.

3 Evolve resulting transmitted wave packet using B-O
dynamics on lower level, until the centre of mass reaches
the scattering region.
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Numerics 1: Gaussian Wavepacket, ε = 1/40
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Numerics 2: Non-Gaussian Wavepacket, ε = 1/40
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Numerics 3: Gaussian Wavepacket, ε = 1/200
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Back to NaI
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Numerics 4: NaI, ε = 0.00531
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What went wrong?

We have three main assumptions:

The slope of the potential is small;

The wavepacket is semiclassical [width order ε1/2];

The potential is locally flat.

These are all related.

Main issue: The wavepacket is actually quite broad.
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ψ

16 / 19



Linearity to the rescue!

We’re solving
iε∂tψ = Hψ.

Since it’s linear, we can:

‘Slice’ the incoming wavepacket in space
(partition of unity);
Evolve each slice to the crossing point;
Apply our formula;
Recombine slices by evolving away from crossing point.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

17 / 19



Numerics 5: NaI, ε = 0.00531, 30 slices
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Summary and open problems

We have:

A vastly simplified model for transitions.

Applicable to real-life systems.

Extended this to cases where the slope at the crossing is
not small.

To do:

Extend to higher dimensions.

Understand the asymptotics of the coupling elements.

Prove rigorous error estimates.
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