Photo-dissociation of molecules:

mathematics meets quantum chemistry

Ben Goddard

School of Mathematics, University of Edinburgh and The Maxwell Institute for Mathematical Sciences

ScotCHEM 2017

Joint work with Volker Betz (TU Darmstadt), Tim Hurst (Edinburgh), Uwe Manthe (Bielefeld) and Stefan Teufel (Tübingen)

0MAXWELL INSTITUTE FOR MATHEMATICAL SCIENCES

EPSRC

Questions and challenges

Questions

Assume initial wavefunction lies on the upper level:
(1) How large is the transition probability onto the lower?
(2) What is the precise form of the transmitted wavefunction?
(3) What happens to the transmitted wavepacket?

Questions and challenges

Questions

Assume initial wavefunction lies on the upper level:
(1) How large is the transition probability onto the lower?
(2) What is the precise form of the transmitted wavefunction?
(3) What happens to the transmitted wavepacket?

Challenges

Due to the presence of a small parameter $\epsilon=\sqrt{m_{\mathrm{e}} / m_{\mathrm{n}}}$:

- Wavefunctions are rapidly oscillating (typical frequency $1 / \epsilon$);
- Transmitted wavepacket is exponentially small (in $1 / \epsilon$ and the gap);
- Requires very high accuracy numerics.

Questions and challenges

Questions

Assume initial wavefunction lies on the upper level:
(1) How large is the transition probability onto the lower?
(2) What is the precise form of the transmitted wavefunction?
(3) What happens to the transmitted wavepacket?

Challenges

Due to the presence of a small parameter $\epsilon=\sqrt{m_{\mathrm{e}} / m_{\mathrm{n}}}$:

- Wavefunctions are rapidly oscillating (typical frequency $1 / \epsilon$);
- Transmitted wavepacket is exponentially small (in $1 / \epsilon$ and the gap);
- Requires very high accuracy numerics.

Aim

Compute the transmitted wavepacket using only single-level (Born-Oppenheimer) dynamics.

For N_{n} nuclei with positions \mathbf{x}_{n} and N_{e} electrons with positions x_{e},

$$
\mathrm{i} \hbar \partial_{t} \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)=H \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)
$$

with

$$
H=-\frac{\hbar^{2}}{2 m_{\mathrm{n}}} \Delta_{\mathbf{x}_{\mathrm{n}}}-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \Delta_{\mathbf{x}_{\mathrm{e}}}+V_{\mathrm{n}}\left(\mathbf{x}_{\mathrm{n}}\right)+V_{\mathrm{e}}\left(\mathbf{x}_{\mathrm{e}}\right)+V_{\mathrm{n}, \mathrm{e}}\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}\right)
$$

$V_{\mathrm{n}}=$ Coulomb repulsion between nuclei.
$V_{\mathrm{e}}=$ Coulomb repulsion between electrons.
$V_{\mathrm{n}, \mathrm{e}}=$ Coulomb attraction between nuclei and electrons.

The role of ε (Chemistry/Maths scalings)

For N_{n} nuclei with positions \mathbf{x}_{n} and N_{e} electrons with positions x_{e},

$$
\mathrm{i} \hbar \partial_{t} \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)=H \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)
$$

with

$$
H=-\frac{\hbar^{2}}{2 m_{\mathrm{n}}} \Delta_{\mathbf{x}_{\mathrm{n}}}-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \Delta_{\mathbf{x}_{\mathrm{e}}}+V_{\mathrm{n}}\left(\mathbf{x}_{\mathrm{n}}\right)+V_{\mathrm{e}}\left(\mathbf{x}_{\mathrm{e}}\right)+V_{\mathrm{n}, \mathrm{e}}\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}\right) .
$$

- Atomic units: $\hbar=m_{\mathrm{e}}=1$.

The role of ε (Chemistry/Maths scalings)

For N_{n} nuclei with positions \mathbf{x}_{n} and N_{e} electrons with positions x_{e},

$$
\mathrm{i} \partial_{t} \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)=H \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)
$$

with

$$
H=-\frac{1}{2 m_{\mathrm{n}}} \Delta_{\mathbf{x}_{\mathrm{n}}}-\frac{1}{2} \Delta_{\mathbf{x}_{\mathrm{e}}}+V_{\mathrm{n}}\left(\mathbf{x}_{\mathrm{n}}\right)+V_{\mathrm{e}}\left(\mathbf{x}_{\mathrm{e}}\right)+V_{\mathrm{n}, \mathrm{e}}\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}\right) .
$$

- Atomic units: $\hbar=m_{\mathrm{e}}=1$.

For N_{n} nuclei with positions \mathbf{x}_{n} and N_{e} electrons with positions x_{e},

$$
\mathrm{i} \partial_{t} \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)=H \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)
$$

with

$$
H=-\frac{1}{2 m_{\mathrm{n}}} \Delta_{\mathbf{x}_{\mathrm{n}}}-\frac{1}{2} \Delta_{\mathbf{x}_{\mathrm{e}}}+V_{\mathrm{n}}\left(\mathbf{x}_{\mathrm{n}}\right)+V_{\mathrm{e}}\left(\mathbf{x}_{\mathrm{e}}\right)+V_{\mathrm{n}, \mathrm{e}}\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}\right) .
$$

- Atomic units: $\hbar=m_{\mathrm{e}}=1$.
- $m_{\mathrm{n}} \gg m_{\mathrm{e}}$, for simplicity $m_{\mathrm{n}, i}=\varepsilon^{-2}$ for all i.

For N_{n} nuclei with positions \mathbf{x}_{n} and N_{e} electrons with positions x_{e},

$$
\mathrm{i} \partial_{t} \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)=H \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)
$$

with

$$
H=-\frac{\varepsilon^{2}}{2} \Delta_{\mathbf{x}_{\mathrm{n}}}-\frac{1}{2} \Delta_{\mathbf{x}_{\mathrm{e}}}+V_{\mathrm{n}}\left(\mathbf{x}_{\mathrm{n}}\right)+V_{\mathrm{e}}\left(\mathbf{x}_{\mathrm{e}}\right)+V_{\mathrm{n}, \mathrm{e}}\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}\right) .
$$

- Atomic units: $\hbar=m_{\mathrm{e}}=1$.
- $m_{\mathrm{n}} \gg m_{\mathrm{e}}$, for simplicity $m_{\mathrm{n}, i}=\varepsilon^{-2}$ for all i.

For N_{n} nuclei with positions \mathbf{x}_{n} and N_{e} electrons with positions x_{e},

$$
\mathrm{i} \partial_{t} \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)=H \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)
$$

with

$$
H=-\frac{\varepsilon^{2}}{2} \Delta_{\mathbf{x}_{\mathrm{n}}}-\frac{1}{2} \Delta_{\mathbf{x}_{\mathrm{e}}}+V_{\mathrm{n}}\left(\mathbf{x}_{\mathrm{n}}\right)+V_{\mathrm{e}}\left(\mathbf{x}_{\mathrm{e}}\right)+V_{\mathrm{n}, \mathrm{e}}\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}\right) .
$$

- Atomic units: $\hbar=m_{\mathrm{e}}=1$.
- $m_{\mathrm{n}} \gg m_{\mathrm{e}}$, for simplicity $m_{\mathrm{n}, i}=\varepsilon^{-2}$ for all i.
- Motion of nuclei very slow: $t \mapsto t / \varepsilon$.

For N_{n} nuclei with positions \mathbf{x}_{n} and N_{e} electrons with positions x_{e},

$$
\mathrm{i} \varepsilon \partial_{t} \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)=H \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)
$$

with

$$
H=-\frac{\varepsilon^{2}}{2} \Delta_{\mathbf{x}_{\mathrm{n}}}-\frac{1}{2} \Delta_{\mathbf{x}_{\mathrm{e}}}+V_{\mathrm{n}}\left(\mathbf{x}_{\mathrm{n}}\right)+V_{\mathrm{e}}\left(\mathbf{x}_{\mathrm{e}}\right)+V_{\mathrm{n}, \mathrm{e}}\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}\right) .
$$

- Atomic units: $\hbar=m_{\mathrm{e}}=1$.
- $m_{\mathrm{n}} \gg m_{\mathrm{e}}$, for simplicity $m_{\mathrm{n}, i}=\varepsilon^{-2}$ for all i.
- Motion of nuclei very slow: $t \mapsto t / \varepsilon$.

For N_{n} nuclei with positions \mathbf{x}_{n} and N_{e} electrons with positions x_{e},

$$
\mathrm{i} \varepsilon \partial_{t} \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)=H \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)
$$

with

$$
H=-\frac{\varepsilon^{2}}{2} \Delta_{\mathbf{x}_{\mathrm{n}}}-\frac{1}{2} \Delta_{\mathbf{x}_{\mathrm{e}}}+V_{\mathrm{n}}\left(\mathbf{x}_{\mathrm{n}}\right)+V_{\mathrm{e}}\left(\mathbf{x}_{\mathrm{e}}\right)+V_{\mathrm{n}, \mathrm{e}}\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}\right) .
$$

- Atomic units: $\hbar=m_{\mathrm{e}}=1$.
- $m_{\mathrm{n}} \gg m_{\mathrm{e}}$, for simplicity $m_{\mathrm{n}, i}=\varepsilon^{-2}$ for all i.
- Motion of nuclei very slow: $t \mapsto t / \varepsilon$.
- Define electronic Hamiltonian $H_{\mathrm{e}}\left(\mathrm{x}_{\mathrm{n}}\right)$.

For N_{n} nuclei with positions \mathbf{x}_{n} and N_{e} electrons with positions x_{e},

$$
\mathrm{i} \varepsilon \partial_{t} \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)=\left(-\frac{\varepsilon^{2}}{2} \Delta_{\mathbf{x}_{\mathrm{n}}}+H_{\mathrm{e}}\left(\mathbf{x}_{\mathrm{n}}\right)\right) \psi\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}, t\right)
$$

with

$$
H=-\frac{\varepsilon^{2}}{2} \Delta_{\mathbf{x}_{\mathrm{n}}}-\frac{1}{2} \Delta_{\mathbf{x}_{\mathrm{e}}}+V_{\mathrm{n}}\left(\mathbf{x}_{\mathrm{n}}\right)+V_{\mathrm{e}}\left(\mathbf{x}_{\mathrm{e}}\right)+V_{\mathrm{n}, \mathrm{e}}\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{e}}\right) .
$$

- Atomic units: $\hbar=m_{\mathrm{e}}=1$.
- $m_{\mathrm{n}} \gg m_{\mathrm{e}}$, for simplicity $m_{\mathrm{n}, i}=\varepsilon^{-2}$ for all i.
- Motion of nuclei very slow: $t \mapsto t / \varepsilon$.
- Define electronic Hamiltonian $H_{\mathrm{e}}\left(\mathrm{x}_{\mathrm{n}}\right)$.

Two-level system with one degree of freedom:

$$
\begin{aligned}
\mathrm{i} \varepsilon \partial_{t}\binom{\psi_{1}(x, t)}{\psi_{2}(x, t)} & =\left(-\frac{\varepsilon^{2}}{2} \partial_{x}^{2} \mathbf{I}+V(x)+d(x) \mathbf{I}\right)\binom{\psi_{1}(x, t)}{\psi_{2}(x, t)}, \text { with } \\
V(x) & =\rho(x)\left(\begin{array}{cc}
\cos (\theta(x)) & \sin (\theta(x)) \\
\sin (\theta(x)) & -\cos (\theta(x))
\end{array}\right)
\end{aligned}
$$

\mathbf{I} is the 2×2 unit matrix, x the nuclear separation.
Assume $\rho \geq \delta>0$; an avoided crossing with gap at least 2δ.
δ should be small and independent of ϵ.
Nuclei move a distance of order one in a time of order one.

Adiabatic representation

For
$U_{0}(x)=\left(\begin{array}{cc}\cos (\theta(x) / 2) & \sin (\theta(x) / 2) \\ \sin (\theta(x) / 2) & -\cos (\theta(x) / 2)\end{array}\right), \psi_{\mathrm{a}}(x, t)=U_{0}(x) \psi(x, t)$,
we obtain
$\mathrm{i} \varepsilon \partial_{t} \psi_{\mathrm{a}}(x, t)=H_{0} \psi_{\mathrm{a}}(x, t)$, with
$H_{0}=U_{0} H U_{0}^{*}=-\frac{\varepsilon^{2}}{2} \partial_{x}^{2} \mathbf{I}+\left(\begin{array}{ll}\rho(x)+d(x)+\varepsilon^{2} \frac{\theta^{\prime}(x)^{2}}{8} & -\varepsilon \frac{\theta^{\prime}(x)}{2} \cdot\left(\varepsilon \partial_{x}\right)-\varepsilon^{2} \frac{\theta^{\prime \prime \prime}(x)}{4} \\ \varepsilon \frac{\theta^{\prime}(x)}{2} \cdot\left(\varepsilon \partial_{x}\right)+\varepsilon^{2} \frac{\theta^{\prime \prime}(x)}{4} & -\rho(x)+d(x)+\varepsilon^{2} \frac{\theta^{\prime}(x)^{2}}{8}\end{array}\right)$.

Adiabatic representation

For

$$
U_{0}(x)=\left(\begin{array}{cc}
\cos (\theta(x) / 2) & \sin (\theta(x) / 2) \\
\sin (\theta(x) / 2) & -\cos (\theta(x) / 2)
\end{array}\right), \psi_{\mathrm{a}}(x, t)=U_{0}(x) \psi(x, t)
$$

we obtain

$$
\begin{aligned}
& \mathrm{i} \varepsilon \partial_{t} \psi_{\mathrm{a}}(x, t)=H_{0} \psi_{\mathrm{a}}(x, t), \text { with } \\
& H_{0}=U_{0} H U_{0}^{*}=-\frac{\varepsilon^{2}}{2} \partial_{x}^{2} \mathbf{I}+\left(\begin{array}{ll}
\rho(x)+d(x)+\varepsilon^{2} \frac{\theta^{\prime}(x)^{2}}{8} & -\varepsilon \frac{\theta^{\prime}(x)}{2} \cdot\left(\varepsilon \partial_{x}\right)-\varepsilon^{2} \frac{\theta^{\prime \prime \prime}(x)}{4} \\
\varepsilon \frac{\theta^{\prime}(x)}{2} \cdot\left(\varepsilon \partial_{x}\right)+\varepsilon^{2 \frac{\theta^{\prime \prime}(x)}{4}} & -\rho(x)+d(x)+\varepsilon^{2 \frac{\theta^{\prime}(x)^{2}}{8}}
\end{array}\right) \text {. }
\end{aligned}
$$

To leading order, the dynamics decouple: Born-Oppenheimer approximation.

Adiabatic representation

For

$$
U_{0}(x)=\left(\begin{array}{cc}
\cos (\theta(x) / 2) & \sin (\theta(x) / 2) \\
\sin (\theta(x) / 2) & -\cos (\theta(x) / 2)
\end{array}\right), \psi_{\mathrm{a}}(x, t)=U_{0}(x) \psi(x, t)
$$

we obtain

$$
\begin{gathered}
\mathrm{i} \varepsilon \partial_{t} \psi_{\mathrm{a}}(x, t)=H_{0} \psi_{\mathrm{a}}(x, t), \text { with } \\
H_{0}=U_{0} H U_{0}^{*}=-\frac{\varepsilon^{2}}{2} \partial_{x}^{2} \mathbf{I}+\left(\begin{array}{ll}
\rho(x)+d(x)+\varepsilon^{2} \frac{\theta^{\prime}(x)^{2}}{8} & -\varepsilon \frac{\theta^{\prime}(x)}{2} \cdot\left(\varepsilon \partial_{x}\right)-\varepsilon^{2} \frac{\theta^{\prime \prime \prime}(x)}{4} \\
\varepsilon \frac{\theta^{\prime}(x)}{2} \cdot\left(\varepsilon \partial_{x}\right)+\varepsilon^{2} \frac{\theta^{\prime \prime}(x)}{4} & -\rho(x)+d(x)+\varepsilon^{2} \frac{\theta^{\prime}(x)^{2}}{8}
\end{array}\right) .
\end{gathered}
$$

To leading order, the dynamics decouple: Born-Oppenheimer approximation.

Couplings given to first order by the first off-diagonal terms; semiclassical wavefunctions
 oscillate with frequency $1 / \varepsilon$.

What do typical dynamics look like?

$K<\Delta|\ggg|+\cdots+$

We need a better representation than the adiabatic one.

Superadiabatic representations

We need a better representation than the adiabatic one.
Idea: Find a unitary transformation U_{n} such that $\psi_{n}=U_{n} \psi$ solves (to leading order in ε)

$$
\mathrm{i} \varepsilon \partial_{t} \boldsymbol{\psi}_{n}=\left(\begin{array}{cc}
-\frac{\varepsilon^{2}}{2} \partial_{x}^{2}+\rho(x)+d(x) & \varepsilon^{n+1} K_{n+1}^{+} \\
\varepsilon^{n+1} K_{n+1}^{-} & -\frac{\varepsilon^{2}}{2} \partial_{x}^{2}-\rho(x)+d(x)
\end{array}\right) \boldsymbol{\psi}_{n} .
$$

Superadiabatic representations

We need a better representation than the adiabatic one.
Idea: Find a unitary transformation U_{n} such that $\psi_{n}=U_{n} \psi$ solves (to leading order in ε)

$$
\mathrm{i} \varepsilon \partial_{t} \boldsymbol{\psi}_{n}=\left(\begin{array}{cc}
-\frac{\varepsilon^{2}}{2} \partial_{x}^{2}+\rho(x)+d(x) & \varepsilon^{n+1} K_{n+1}^{+} \\
\varepsilon^{n+1} K_{n+1}^{-} & -\frac{\varepsilon^{2}}{2} \partial_{x}^{2}-\rho(x)+d(x)
\end{array}\right) \boldsymbol{\psi}_{n}
$$

U_{n} is known to exist, but is basically impossible to apply numerically.

Superadiabatic representations

We need a better representation than the adiabatic one.
Idea: Find a unitary transformation U_{n} such that $\psi_{n}=U_{n} \psi$ solves (to leading order in ε)

$$
\mathrm{i} \varepsilon \partial_{t} \boldsymbol{\psi}_{n}=\left(\begin{array}{cc}
-\frac{\varepsilon^{2}}{2} \partial_{x}^{2}+\rho(x)+d(x) & \varepsilon^{n+1} K_{n+1}^{+} \\
\varepsilon^{n+1} K_{n+1}^{-} & -\frac{\varepsilon^{2}}{2} \partial_{x}^{2}-\rho(x)+d(x)
\end{array}\right) \boldsymbol{\psi}_{n} .
$$

U_{n} is known to exist, but is basically impossible to apply numerically.

However, we can find the coupling elements K_{n} (which are differential operators) via a (complicated) recursion.

Superadiabatic representations

We need a better representation than the adiabatic one.
Idea: Find a unitary transformation U_{n} such that $\psi_{n}=U_{n} \psi$ solves (to leading order in ε)

$$
\mathrm{i} \varepsilon \partial_{t} \boldsymbol{\psi}_{n}=\left(\begin{array}{cc}
-\frac{\varepsilon^{2}}{2} \partial_{x}^{2}+\rho(x)+d(x) & \varepsilon^{n+1} K_{n+1}^{+} \\
\varepsilon^{n+1} K_{n+1}^{-} & -\frac{\varepsilon^{2}}{2} \partial_{x}^{2}-\rho(x)+d(x)
\end{array}\right) \boldsymbol{\psi}_{n}
$$

U_{n} is known to exist, but is basically impossible to apply numerically.

However, we can find the coupling elements K_{n} (which are differential operators) via a (complicated) recursion.

Approximation: Keep only the leading term corresponding to the highest derivative in K_{n}.

Justified rigorously for high momentum. How well does this work in general?

What does a typical transition look like?

Explicit formula

For any semiclassical ϕ

$$
{\widehat{\psi_{n}^{-}}}^{\varepsilon}(k, t) \approx \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon} t \hat{H}^{-}} \frac{\eta^{*}+k}{2\left|\eta^{*}\right|} \mathrm{e}^{-\frac{\tau_{c}}{2 \delta \epsilon}\left|k-\eta^{*}\right|} \mathrm{e}^{-\mathrm{i} \frac{\tau_{r}}{2 \delta \epsilon}\left(k-\eta^{*}\right)} \widehat{\phi}^{\varepsilon}\left(\eta^{*}\right) \chi_{k^{2}>4 \delta}
$$

- Independent of n, uses only local information.
- Nonadiabatic transitions decouple in momentum space.

Explicit formula

For any semiclassical ϕ

$$
{\widehat{\psi_{n}^{-}}}^{\varepsilon}(k, t) \approx \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon} t \hat{H}^{-}} \frac{\eta^{*}+k}{2\left|\eta^{*}\right|} \mathrm{e}^{-\frac{\tau_{c}}{2 \delta \epsilon}\left|k-\eta^{*}\right|} \mathrm{e}^{-\mathrm{i} \frac{\tau_{r}}{2 \delta \epsilon}\left(k-\eta^{*}\right)} \widehat{\phi}^{\varepsilon}\left(\eta^{*}\right) \chi_{k^{2}>4 \delta}
$$

- Independent of n, uses only local information.
- Nonadiabatic transitions decouple in momentum space.
- $\eta^{*}=\operatorname{sgn}(k) \sqrt{k^{2}-4 \delta}$ is the classical incoming momentum for outgoing momentum k due to energy conservation.

Explicit formula

For any semiclassical ϕ

$$
\widehat{\psi_{n}^{-}}(k, t) \approx \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon} t \hat{H}^{-}} \frac{\eta^{*}+k}{2\left|\eta^{*}\right|} \mathrm{e}^{-\frac{\tau_{c}}{2 \delta \epsilon}\left|k-\eta^{*}\right|} \mathrm{e}^{-\mathrm{i} \frac{\tau_{r}}{2 \delta \epsilon}\left(k-\eta^{*}\right)} \widehat{\phi}^{\varepsilon}\left(\eta^{*}\right) \chi_{k^{2}>4 \delta}
$$

- Independent of n, uses only local information.
- Nonadiabatic transitions decouple in momentum space.
- $\eta^{*}=\operatorname{sgn}(k) \sqrt{k^{2}-4 \delta}$ is the classical incoming momentum for outgoing momentum k due to energy conservation.
- $\chi_{k^{2}>4 \delta}$ is also from energy conservation.

Explicit formula

For any semiclassical ϕ

$$
{\widehat{\psi_{n}^{-}}}^{\varepsilon}(k, t) \approx \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon} t \hat{H}^{-}} \frac{\eta^{*}+k}{2\left|\eta^{*}\right|} \mathrm{e}^{-\frac{\tau_{c}}{2 \delta \epsilon}\left|k-\eta^{*}\right|} \mathrm{e}^{-\mathrm{i} \frac{\tau_{r}}{2 \delta \epsilon}\left(k-\eta^{*}\right)} \widehat{\phi}^{\varepsilon}\left(\eta^{*}\right) \chi_{k^{2}>4 \delta}
$$

- Independent of n, uses only local information.
- Nonadiabatic transitions decouple in momentum space.
- $\eta^{*}=\operatorname{sgn}(k) \sqrt{k^{2}-4 \delta}$ is the classical incoming momentum for outgoing momentum k due to energy conservation.
- $\chi_{k^{2}>4 \delta}$ is also from energy conservation.
- $\tau=\tau_{r}+\mathrm{i} \tau_{c}=2 \int_{0}^{q_{c}} \rho(z) \mathrm{d} z$ with q_{c} the complex zero of ρ closest of the real line. Contributes a Landau-Zener factor, causing the exponential smallness in ε.

Explicit formula

For any semiclassical ϕ

$$
{\widehat{\psi_{n}^{-}}}^{\varepsilon}(k, t) \approx \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon} t \hat{H}^{-}} \frac{\eta^{*}+k}{2\left|\eta^{*}\right|} \mathrm{e}^{-\frac{\tau_{c}}{2 \delta \epsilon}\left|k-\eta^{*}\right|} \mathrm{e}^{-\mathrm{i} \frac{\tau_{r}}{2 \delta \epsilon}\left(k-\eta^{*}\right)} \widehat{\phi}^{\varepsilon}\left(\eta^{*}\right) \chi_{k^{2}>4 \delta}
$$

- Independent of n, uses only local information.
- Nonadiabatic transitions decouple in momentum space.
- $\eta^{*}=\operatorname{sgn}(k) \sqrt{k^{2}-4 \delta}$ is the classical incoming momentum for outgoing momentum k due to energy conservation.
- $\chi_{k^{2}>4 \delta}$ is also from energy conservation.
- $\tau=\tau_{r}+\mathrm{i} \tau_{c}=2 \int_{0}^{q_{c}} \rho(z) \mathrm{d} z$ with q_{c} the complex zero of ρ closest of the real line. Contributes a Landau-Zener factor, causing the exponential smallness in ε.
- $k-\sqrt{k^{2}-4 \delta} \approx 2 \delta / k$, so larger momentum wavepackets are more likely to make the transition.

Explicit formula

For any semiclassical ϕ

$$
\widehat{\psi}_{n}^{-\varepsilon}(k, t) \approx \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon} t \hat{H}^{-}} \frac{\eta^{*}+k}{2\left|\eta^{*}\right|} \mathrm{e}^{-\frac{\tau_{c}}{2 \delta \epsilon}\left|k-\eta^{*}\right|} \mathrm{e}^{-\mathrm{i} \frac{\tau_{r}}{2 \delta \epsilon}\left(k-\eta^{*}\right)} \widehat{\phi}^{\varepsilon}\left(\eta^{*}\right) \chi_{k^{2}>4 \delta}
$$

- Independent of n, uses only local information.
- Nonadiabatic transitions decouple in momentum space.
- $\eta^{*}=\operatorname{sgn}(k) \sqrt{k^{2}-4 \delta}$ is the classical incoming momentum for outgoing momentum k due to energy conservation.
- $\chi_{k^{2}>4 \delta}$ is also from energy conservation.
- $\tau=\tau_{r}+\mathrm{i} \tau_{c}=2 \int_{0}^{q_{c}} \rho(z) \mathrm{d} z$ with q_{c} the complex zero of ρ closest of the real line. Contributes a Landau-Zener factor, causing the exponential smallness in ε.
- $k-\sqrt{k^{2}-4 \delta} \approx 2 \delta / k$, so larger momentum wavepackets are more likely to make the transition.
- For large momentum, small momentum uncertainty, gives Landau-Zener transition probability.
(1) Evolve initial wave packet on upper level using B-O dynamics until centre of mass reaches the transition point.
(2) Apply formula to the wave packet.
(3) Evolve resulting transmitted wave packet using B-O dynamics on lower level, until the centre of mass reaches the scattering region.

Numerics 1: Gaussian Wavepacket, $\varepsilon=1 / 40$

$P($ Transition $)=5.8 \stackrel{3.5}{\times} 10^{-6} \quad{ }_{k}^{3} \quad L^{2} \quad \stackrel{4.5}{\text { Relative Error }}=0.019_{11 / 19}$

Numerics 2: Non-Gaussian Wavepacket, $\varepsilon=1 / 40$

Numerics 3: Gaussian Wavepacket, $\varepsilon=1 / 200$

$P($ Transition $)=1.8 \times 10^{-5} \quad \stackrel{4}{k} \quad L^{2}$ Relative Error $=0.007$

Numerics 4: NaI, $\varepsilon=0.00531$

We have three main assumptions:

- The slope of the potential is small;
- The wavepacket is semiclassical [width order $\epsilon^{1 / 2}$];
- The potential is locally flat.

These are all related.

What went wrong?

We have three main assumptions:

- The slope of the potential is small;
- The wavepacket is semiclassical [width order $\epsilon^{1 / 2}$];
- The potential is locally flat.

These are all related.
Main issue: The wavepacket is actually quite broad.

Linearity to the rescue!

We're solving

$$
\mathrm{i} \varepsilon \partial_{t} \psi=H \psi
$$

Since it's linear, we can:

- 'Slice' the incoming wavepacket in space (partition of unity);
- Evolve each slice to the crossing point;
- Apply our formula;
- Recombine slices by evolving away from crossing point.

Numerics 5: NaI, $\varepsilon=0.00531,30$ slices

$P($ Transition $)=3.4 \times 10^{-2} \quad k_{[\hat{A} / \mathrm{fs}]} \quad L^{2}$ Relative Error $=0.024_{18 / 19}$

We have:

- A vastly simplified model for transitions.
- Applicable to real-life systems.
- Extended this to cases where the slope at the crossing is not small.

To do:

- Extend to higher dimensions.
- Understand the asymptotics of the coupling elements.
- Prove rigorous error estimates.
V. Betz, BDG, S. Teufel, Proc. R. Soc. A 465 3553-3580 (2009)
V. Betz, BDG, Phys. Rev. Lett. 103213001 (2009)
V. Betz, BDG, SIAM J. Sci. Comput. 33(5) 2247-2276 (2011)
V. Betz, BDG, U. Manthe, J. Chem. Phys. 144224109 (2016)

