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Hydrogen Isotope Exchange
Hydrogen isotopes find several applications
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Hydrogen Isotope Exchange
Development of Ir(I) catalysts in the Kerr group and their application in HIE4
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Entry Catalyst %D† Entry Catalyst %D†

1 5a 12 5 6c 94

2 5b 11 6 6d 77

3 6a 77 7 6e 88

4 6b 92 8 6f 87

Applications in HIE of Carbamates
Synthetically valuable carbamates remained unsuitable substrates for HIE

11

†Average of 3 runs. Determined by 1H NMR spectroscopy.
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Applications in HIE of Carbamates
Scope of O-tert-butyl-N-phenyl carbamates

13
† All results indicate the average of 3 runs. Deuterium incorporation was determined by 1H NMR spectroscopy.
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Scope of O-phenyl carbamates
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Scope of O-phenyl carbamates
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Mechanistic Investigations
Mechanism was investigated by DFT calculations†

16
† Reported values correspond to ΔGrel. Δ Hrel are shown in parentheses.
PES calculated at the M06L level of theory employing 6-31G(d) basis set for light atoms and Stuttgart ECP with its associated basis set for Ir in Gaussian 09W, Revision A.02.
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Mechanistic Investigations
Rate studies and KIE measurements were performed

 KIE inconsistent with C—H activation being the rate limiting step.

 Coordination of substrate is a likely competing process.

 O-methyl carbamate was considered as a mechanistic probe.
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Mechanistic Investigations
Rate studies and KIE measurements were performed

 KIE inconsistent with C—H activation being the rate limiting step.

 Coordination of substrate is a likely competing process.

 O-methyl carbamate was considered as a mechanistic probe.
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Mechanistic Investigations
Energetics of the C—H activation were evaluated†

 Negligible steric effects during the C—H activation process.
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Mechanistic Investigations
Rate studies and KIE measurements were performed

 KIE consistent with C—H activation being the rate limiting step.

 Strong temperature dependence suggests competition at 50 °C.
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Proposed Mechanism
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Modelling ΔH‡
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Analysis of predictors unveiled a method for prediction of ΔH‡ for the C—H activation.

 Statistically significant model based on features of the Ir---C—H bond interaction:

• NBO Parameters: E2[σC—H  Ir] and E2[Ir  σ*C—H]

• Optimised Geometry: dIr--H
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ΔH‡ = a0 + a1·E2[Ir  σ*C—H] + a2· E2[σC—H  Ir] + a3·dIr--H

Parameter Value Descriptor Value

a0 128.9 r2 0.9318

a1 -3.598 r2
adj 0.9090

a2 0.1472 r2
pred 0.8392

a3 -40.91 σ 0.32



Conclusion
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Synthesis of Iridium(I) Complexes
Modular synthesis of bidentate NHC/phosphine ligands was uncovered
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