

Time-resolved photoionization: CS_2 and 1,3-cyclohexadiene

Maria Tudorovskaya The University of Edinburgh

 $\begin{array}{c} 16/06/2017\\ {\rm ScotCHEM\ Computational\ Chemistry\ Symposium\ Glasgow}\end{array}$

Photoionization: introduction

Aim:

Outline:

- \checkmark What is the photoionization rate?
- ✓ Methods
- \checkmark CHD: channel-resolved photoionization
- $\checkmark \mathrm{CS}_2\!\!:$ "average trajectory" approach
- $\checkmark {\rm Next \ steps}$

ScotCHEM Computational Chemistry Symposium, Glasgow M. Tudorovskaya

THE DINBUT

A. Saenz: Atoms and Molecules inB. Intense Laser Fields, Berlin 2014

F, ω (field strength & frequency); E_{ion} (ionization energy)

A. Saenz: Atoms and Molecules inB. Intense Laser Fields, Berlin 2014

 $\mathbf{F}^{\uparrow}, \boldsymbol{\omega} \downarrow$ - tunneling

ScotCHEM Computational Chemistry Symposium, Glasgow M. Tudorovskaya

 $\mathbf{F} \downarrow, \boldsymbol{\omega} \uparrow$ - multiphoton

M. Tudorovskaya

Theoretical assumptions

- $M(i) \longrightarrow M^+(j)$, no inter-channel interaction
- No resonances
- Upon ionization: Coulomb field of the core only

field is neglected;

no $e^- - e^-$ interaction;

- Wave functions: M(i) orthogonal to e⁻
- Photoionzation threshold law: $E_{\omega}=I_{p}+k^{2}/2$ (one photon)

vs. strong-field regime: peaks at ${\rm nE}_{\omega}\,{=}I_{\rm p}{+}k^2/2$

Dyson orbitals: the concept

Rate of n-photon ionization:

 $\Gamma_n = I^n \sigma$

ScotCHEM Computational Chemistry Symposium, Glasgow M. Tudorovskaya

NIVE

8

EDINBUT

QCHEM Input:

EZDYSON Input:

Photoiniozation of 1,3-Cyclohexadiene (CHD)

CHD: Time-dependent photoionization cross section

QMD:

M. P. Minitti,^{1,5} J. M. Budarz,¹² A. Kirrander,³ J. S. Robinson,¹ D. Ratner,¹ T. J. Lane,^{1,4} D. Zhu,¹ J. M. Glownia,⁵ M. Kozina,⁴ H. T. Lemke,⁶ M. Sikorski,¹ Y. Feng,¹ S. Nelson,⁴ K. Saina,³ B. Stankus,² T. Northey,³ J. B. Hastings,¹³ and P. M. Weber^{2,1}

ScotCHEM Computational Chemistry Symposium, Glasgow M. Tudorovskaya

CS2: dynamics upon excitation

INIVE,

 8 CS_2 states are involved (4 singlets, 4 triplets)

600

800

- N ionic states can be included => N*8
- Total S \downarrow , total T

<u> CS_2 : time-dependent photoionization</u>

Geometry oscillations along the <u>"average" trajectory:</u>

ScotCHEM Computational Chemistry Symposium, Glasgow M. Tudorovskaya

ScotCHEM Computational Chemistry Symposium, Glasgow M. Tudorovskaya

.

21

22

CS₂: channel-resolved photoelectron spectrum

Conclusions + **Next steps:**

Photoionization:

- \checkmark Tool to analyse pump-probe experiments
- ✓ Photoionization signal reflects structural changes!
- + \mathbf{CS}_2 : photoelectron spectra vs. experiment
- CHD: full ring opening reaction of 1,3-cyclohexadiene

Acknowledgements

- Edinburgh: Adam Kirrander, Darren Bellshaw
- Southampton: Russell Minns (experimental group)
- Hokkaido, Japan: Kenichiro Saita
- ezDyson team: Samer Gozem

Thank you!

<u>CS₂: photoioniozation from the ground state</u>

Cooper minimum – due to the shape of the orbital and the continuum state;
Should be visible in the HHG spectrum

 CS_2 vs. OCS

ScotCHEM Computational Chemistry Symposium, Glasgow M. Tudorovskaya

Next steps: Photoionization and HHG

• Saddle-point approximation:

High-Harmonic Generation:Ionization+Free electron acceleration+ $I_p(R(t))$ F(t)

Quantitative Rescattering Theory (Le et. al):

• Photorecombination at the low field intensity: multiphoton regime

ScotCHEM Computational Chemistry Symposium, Glasgow M. Tudorovskaya

Electron Photorecombination

 $I_p(R(t))$; Energy (R(t))

DO approach!

Radial part of atomic orbitals

Occurrence of Cooper minimum In atoms

