

Understanding rhodium solvent extraction: a mode of action study

Rebecca M. Nicolson, Ross J. Gordon, Jason B. Love, Peter A. Tasker, and Carole A. Morrison

Rhodium and its recovery

- Rh is a useful, valuable metal. \$30,000 per kg
- It can be obtained from platinum ores or recycled from secondary sources.
- Current recovery methods employ a precipitation step; this is undesirable and solvent extraction would be preferred.

Rhodium and its recovery

- Rh is a useful, valuable metal. \$30,000 per kg
- It can be obtained from platinum ores or recycled from secondary sources.
- Current recovery methods employ a precipitation step; this is undesirable and solvent extraction would be preferred.

Solvent extraction (SX)

- Transfer of species from aqueous solution into an immiscible organic solution
- Precious metals are often extracted from HCl solutions, as chloridometalates, MCl_x^{y-} e.g. $RhCl_6^{3-}$
 - ▶ Chloridometalate SX anion exchange:

$$yL_{(org)} + yH^{+}_{(aq)} + MCI_{x}^{y-}_{(aq)} = [(LH)_{y}MCI_{x}]_{(org)}$$

SX of Rh from HCl solution

- Rh is present in HCl solution as a variety of complexes, the concentration of each changing with the chloride concentration
- The mixture makes Rh difficult to extract, as the target complex is not present at 100%
- In addition, highly charged and/or highly hydrated complexes are more difficult to extract (Hofmeister bias)
 - Because their hydration shell is more difficult to displace

Rh extractants

- Currently, there is no commercial reagent for the SX of Rh
- Many ligands have been shown to be poor extractants for Rh chloridometalates from high [HCl] solutions – successful extraction usually requires treatment with some other reagent¹
- However, successful extraction has recently been reported using amido-amine extractants^{2,3}

 Understanding how these successful extractants work is key to developing further, improved Rh extractants

^{1.} Benguerel, E.; Demopoulos, G. P.; Harris, G. B., Hydrometallurgy 1996, 40, 135-52.

^{2.} Narita, H.; Morisaku, K.; Tanaka, M., Chem. Commun. (Cambridge, U. K.) 2008, 5921-5923.

^{3.} Narita, H.; Morisaku, K.; Tanaka, M., Solvent Extr. Ion Exch. 2015, 33, 407-417.

Mode of action

- Narita et al. concluded that their ligands:^{1,2}
 - extracted [RhCl₅(H₂O)]²⁻
 - worked via an ion-pair mechanism
 - may hydrogen-bond to the aquo ligand
 - and that BisAA and TrisAA have a feature, that MonoAA lacks, which makes them better extractants

[.] Narita, H.; Morisaku, K.; Tanaka, M., *Chem. Commun. (Cambridge, U. K.)* **2008**, 5921-5923.

^{2.} Narita, H.; Morisaku, K.; Tanaka, M., Solvent Extr. Ion Exch. 2015, 33, 407-417.

Aims

Understand the mode of action of MonoAA, BisAA and TrisAA in Rh solvent extraction

Conduct some preliminary extraction experiments and analysis (using BisAA)

- Use QM calculations to:
 - visualise the extracted complexes
 - determine formation and exchange energies
 - explore the differences in behaviour between MonoAA, BisAA and TrisAA

Conclusions from experimental work

- Water content of organic phase essentially constant with increasing Rh concentration
- → suggests that extraction is not via a micelle mechanism

 ESI-MS identified the main extracted species to be:

 $[(RhCl_5(H_2O))(LH)_2]$ or $[(RhCl_5L)(LH)_2]$

→ at least one ligand in the outer-sphere

Modelling

 Modelling ion-pair extraction mode based on experimental findings Use versions of the ligands with truncated R-groups for modelling

- Structures to model:
 - ► [(RhCl₅(H₂O))(LH)₂] complex
 - ► [Cl(LH)] complex
 - all species required for formation energies

Minimum energy structure of BisAA(Me):

Binding of BisAA(Me)H⁺

 Electrostatic potential plots show areas of positive charge (blue) and relatively negative charge (green)

- Proton very positive
- Amide O atoms negative
- "Back" of ligand also positive

It is possible that the back of the ligand, an area of diffuse positive charge, could bind to the anions

Possible [Cl(BisAA(Me)H)] structures:

BUT only 2 kJ mol⁻¹ higher

Lowest energy structure

Likely that both exist in solution

• There are a number of possible [(RhCl₅(H₂O))(BisAA(Me)H)₂] binding modes:

Lowest energy structure of [(RhCl₅(H₂O))(BisAA(Me)H)₂]:

MonoAA(Me) modelling

The same process was carried out for MonoAA(Me) MonoAA(Me) MonoAA(Me)H+ [Cl(MonoAA(Me)H)] $[(RhCl_5(H_2O))(MonoAA(Me)H)_2]$

Comparing Mono and Bis – Structures

- With MonoAA(Me)H⁺:
 - N-H...Cl interaction
 - no intra-ligand H-bond

- With BisAA(Me)H⁺:
 - ► C-H... Cl interactions
 - intra-ligand H-bonding

MonoAA(Me)H⁺ and BisAA(Me)H⁺ interact with chloride in **different** ways

Comparing Mono and Bis – Structures

- With MonoAA(Me)H⁺:
 - both ligands have a N-H...anion interaction
 - one amide O forms a H-bond with the aquo ligand
 - no intra-ligand H-bonds

- With BisAA(Me)H⁺:
 - both ligand have C-H... anion interactions
 - there is no aquo ligand to amide O H-bonding
 - both ligands have intra-ligand Hbonding

MonoAA(Me)H⁺ and BisAA(Me)H⁺ interact with $[RhCl_5(H_2O)]^{2-}$ in **different** ways

Comparing Mono and Bis – Structures

- MonoAA(Me)H⁺ and BisAA(Me)H⁺ have different anion binding sites
- This is likely due to differing numbers of possible intra-ligand H-bonds
 - MonoAA(Me)H⁺ only has one potential H-bond
- → smaller energy penalty to disrupt

- ► BisAA(Me)H⁺ has two potential H-bonds
- → larger energy penalty to disrupt

MonoAA(Me)H⁺ binding site:

- N-H...anion interaction
- "Hard" interaction
- Favours binding of "hard" anions, e.g. chloride

BisAA(Me)H⁺ binding site:

- C-H...anion interaction
- "Soft" interaction
- Favour bindings of "soft" anions,
 e.g. [RhCl₅(H₂O)]²⁻

$$L + H_3O^+ \rightleftharpoons LH^+ + H_2O$$

$$L + Cl^- + H_3O^+ \rightleftharpoons LHCl + H_2O$$

$$2L + [RhCl_5(H_2O)]^{2-} + 2H_3O^+ \rightleftharpoons [(LH)_2(RhCl_5(H_2O))] + 2H_2O$$

$$2LHCI + [RhCl_5(H_2O)]^{2-} \rightleftharpoons [(LH)_2(RhCl_5(H_2O))] + 2CI^{-}$$

Process	Ligand	Gibbs Free Energy / kJ mol ^{-1 #}
Eq. 1	Mono	-116.4
	Bis	-117.5
Eq. 2	Mono	-133.1
	Bis	-128.1
Eq. 3	Mono	-250.6
	Bis	-259.5
Eq. 4	Mono	15.6
	Bis	-3.3

 The following points can be summarised:

M06/LANL2TZ,6-311+G**

PCM(SCRF, solvent=chloroform or water)

$$L + H_3O^+ \rightleftharpoons LH^+ + H_2O$$

Eq. 1.

$$L + Cl^- + H_3O^+ \rightleftharpoons LHCl + H_2O$$

Eq. 2.

$$2L + [RhCl_5(H_2O)]^{2-} + 2H_3O^+ \rightleftharpoons [(LH)_2(RhCl_5(H_2O))] + 2H_2O$$

Eq. 3.

$$2LHCI + [RhCl_5(H_2O)]^{2-} \rightleftharpoons [(LH)_2(RhCl_5(H_2O))] + 2CI^{-}$$

Eq. 4.

Process	Ligand	Gibbs Free Energy / kJ mol ^{-1 #}
Eq. 1	Mono	-116.4
	Bis	-117.5
Eq. 2	Mono	-133.1
	Bis	-128.1
Eq. 3	Mono	-250.6
	Bis	-259.5
Eq. 4	Mono	15.6
	Bis	-3.3

- The following points can be summarised:
 - 1. Protonation energies of the two molecules are comparable

M06/LANL2TZ,6-311+G**

PCM(SCRF, solvent=chloroform or water)

$$L + H_3O^+ \rightleftharpoons LH^+ + H_2O$$

$$L + Cl^- + H_3O^+ \rightleftharpoons LHCl + H_2O$$

$$2L + [RhCl_5(H_2O)]^{2-} + 2H_3O^+ \rightleftharpoons [(LH)_2(RhCl_5(H_2O))] + 2H_2O$$

Eq. 3.

$$2LHCI + [RhCl_5(H_2O)]^{2-} \rightleftharpoons [(LH)_2(RhCl_5(H_2O))] + 2CI^{-}$$

Eq. 4.

Process	Ligand	Gibbs Free Energy / kJ mol ^{-1 #}
Eq. 1	Mono	-116.4
	Bis	-117.5
Eq. 2	Mono	-133.1
	Bis	-128.1
Eq. 3	Mono	-250.6
	Bis	-259.5
Eq. 4	Mono	15.6
	Bis	-3.3

- The following points can be summarised:
 - 1. Protonation energies of the two molecules are comparable
 - Association with chloride is more favourable for MonoAA(Me) than BisAA(Me)

M06/LANL2TZ,6-311+G**

PCM(SCRF, solvent=chloroform or water)

$$L + H_3O^+ \rightleftharpoons LH^+ + H_2O$$

Eq. 1.

$$L + Cl^- + H_3O^+ \rightleftharpoons LHCl + H_2O$$

Eq. 2.

$$2L + [RhCl_5(H_2O)]^{2-} + 2H_3O^+ \rightleftharpoons [(LH)_2(RhCl_5(H_2O))] + 2H_2O$$

Eq. 3.

$$2LHCI + [RhCl5(H2O)]2- \rightleftharpoons [(LH)2(RhCl5(H2O))] + 2CI-$$

Eq. 4.

Process	Ligand	Gibbs Free Energy / kJ mol ^{-1 #}
Eq. 1	Mono	-116.4
	Bis	-117.5
Eq. 2	Mono	-133.1
	Bis	-128.1
Eq. 3	Mono	-250.6
	Bis	-259.5
Eq. 4	Mono	15.6
	Bis	-3.3

- The following points can be summarised:
 - 1. Protonation energies of the two molecules are comparable
 - Association with chloride is more favourable for MonoAA(Me) than BisAA(Me)
 - Association with the Rh species is more favourable for BisAA(Me) than MonoAA(Me)

M06/LANL2TZ,6-311+G**

PCM(SCRF, solvent=chloroform or water)

$$L + H_3O^+ \rightleftharpoons LH^+ + H_2O$$

$$L + Cl^- + H_3O^+ \rightleftharpoons LHCl + H_2O$$

$$2L + [RhCl_5(H_2O)]^{2-} + 2H_3O^+ \rightleftharpoons [(LH)_2(RhCl_5(H_2O))] + 2H_2O$$

$$2LHCI + [RhCl_5(H_2O)]^{2-} \rightleftharpoons [(LH)_2(RhCl_5(H_2O))] + 2CI^{-}$$

Eq. 4.

Process	Ligand	Gibbs Free Energy / kJ mol ^{-1 #}
Eq. 1	Mono	-116.4
	Bis	-117.5
Eq. 2	Mono	-133.1
	Bis	-128.1
Eq. 3	Mono	-250.6
	Bis	-259.5
Eq. 4	Mono	15.6
	Bis	-3.3

- The following points can be summarised:
 - 1. Protonation energies of the two molecules are comparable
 - Association with chloride is more favourable for MonoAA(Me) than BisAA(Me)
 - Association with the Rh species is more favourable for BisAA(Me) than MonoAA(Me)
 - Exchange of chloride for Rh species is more favourable for BisAA(Me) than MonoAA(Me)

M06/LANL2TZ,6-311+G**

PCM(SCRF, solvent=chloroform or water)

More favourable association with chloride using MonoAA(Me)

Rh extraction decreasing with increasing HCl concentration using MonoAA

More favourable association with Rh using BisAA(Me)

the **extraction of Rh remaining high** to start and only decreasing with much higher [HCl] using **BisAA**

Conclusions

- QM calculations have shown:
 - protonated MonoAA(Me) and BisAA(Me) have different binding sites
 - ▶ less competition with chloride using BisAA → BisAA is a more selective extractant
 - ▶ stronger association with $[RhCl_5(H_2O)]^{2-}$ using BisAA \rightarrow BisAA is a stronger extractant

QM modelling supports and rationalises the experimental results

- This mode of action study has provided important insight into the extraction mechanism
 - ▶ This information can help design new reagents

Acknowledgements

Johnson Matthey Inspiring science, enhancing life

- Dr Carole Morrison
- Prof Jason Love
- Prof Peter Tasker
- Innis Carson
- Euan Doidge
- Dr Mary Healy
- Jamie Hunter
- Dr Kirsty MacRuary
- Dr David Rodgers

- Dr Ross Gordon
- Dr Emma Schofield

Ongoing work

QM calculations for the TrisAA(Me) systems

