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• Rh is a useful, valuable metal.

• It can be obtained from platinum ores or recycled from secondary 
sources.

• Current recovery methods employ a precipitation step; this is 
undesirable and solvent extraction would be preferred.
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• Transfer of species from aqueous solution into an immiscible organic solution

• Precious metals are often extracted from HCl solutions, as chloridometalates, 
MClx

y− e.g. RhCl6
3−

Solvent extraction (SX)

 Chloridometalate SX – anion exchange:

yL(org) + yH+
(aq) + MClx

y−
(aq) [(LH)yMClx](org)
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SX of Rh from HCl solution

• Rh is present in HCl solution as a variety of complexes, the concentration of each 
changing with the chloride concentration

• The mixture makes Rh difficult to extract, as the target complex is not present at 
100%

• In addition, highly charged and/or highly hydrated complexes are more difficult to 
extract (Hofmeister bias)

 Because their hydration shell is more difficult to displace 5



• Currently, there is no commercial reagent for the SX of Rh

• Many ligands have been shown to be poor extractants for Rh chloridometalates from high 
[HCl] solutions – successful extraction usually requires treatment with some other reagent1

Rh extractants
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1. Benguerel, E.; Demopoulos, G. P.; Harris, G. B., Hydrometallurgy 1996, 40, 135-52.
2. Narita, H.; Morisaku, K.; Tanaka, M., Chem. Commun. (Cambridge, U. K.) 2008, 5921-5923.
3. Narita, H.; Morisaku, K.; Tanaka, M., Solvent Extr. Ion Exch. 2015, 33, 407-417.

• However, successful extraction has recently 
been reported using amido-amine extractants2,3

• Understanding how these successful extractants 
work is key to developing further, improved Rh 
extractants
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Mode of action
• Narita et al. concluded that their ligands:1,2

 extracted [RhCl5(H2O)]2−

 worked via an ion-pair mechanism

 may hydrogen-bond to the aquo ligand

 and that BisAA and TrisAA have a feature, 
that MonoAA lacks, which makes them 
better extractants
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Aims

Understand the mode of action of MonoAA, BisAA and TrisAA
in Rh solvent extraction

• Conduct some preliminary extraction experiments and analysis (using BisAA)

• Use QM calculations to:

 visualise the extracted complexes

 determine formation and exchange energies

 explore the differences in behaviour between MonoAA, BisAA and TrisAA



Conclusions from experimental work
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• ESI-MS identified the main 
extracted species to be:

[(RhCl5(H2O))(LH)2] or [(RhCl5L)(LH)2] 

 at least one ligand in 
the outer-sphere

• Water content of organic phase 
essentially constant with increasing 
Rh concentration

 suggests that extraction is not via 
a micelle mechanism



Modelling
• Modelling ion-pair extraction mode 

based on experimental findings
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• Use versions of the ligands with 
truncated R-groups for modelling

• Structures to model:

 [(RhCl5(H2O))(LH)2] complex

 [Cl(LH)] complex

 all species required for formation 
energies



• Minimum energy structure of BisAA(Me):
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BisAA(Me) modelling
M06/6-311+G**, PCM (solvent=chloroform)



• Minimum energy structure of BisAA(Me)H+:

BisAA(Me) modelling
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M06/6-311+G**, PCM (solvent=chloroform)



Binding of BisAA(Me)H+
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• Electrostatic potential plots show 
areas of positive charge (blue) and 
relatively negative charge (green)

 Proton very positive

 Amide O atoms negative 

 “Back” of ligand also positive

It is possible that the back of the 
ligand, an area of diffuse positive 
charge, could bind to the anions



• Possible [Cl(BisAA(Me)H)] structures:

BisAA(Me) modelling
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Lowest energy structure

M06/6-311+G**, PCM (solvent=chloroform)

BUT
only 2 kJ mol−1 higher

Likely that both 
exist in solution



BisAA(Me) modelling
• There are a number of possible [(RhCl5(H2O))(BisAA(Me)H)2] binding modes:
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N-H...anion 

interaction

N-H...anion 

interaction

+ H-bond

C-H...anion 

interactions

C-H...anion 

interactions

+ H-bond



BisAA(Me) modelling
• Lowest energy structure of [(RhCl5(H2O))(BisAA(Me)H)2]:
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Side view:

Top view:

M06/6-311+G**, PCM (solvent=chloroform)



• The same process was carried out for MonoAA(Me)

MonoAA(Me) modelling

17

MonoAA(Me)

MonoAA(Me)H+

[Cl(MonoAA(Me)H)]

[(RhCl5(H2O))(MonoAA(Me)H)2]

M06/6-311+G**, PCM (solvent=chloroform)



Comparing Mono and Bis – Structures
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• With MonoAA(Me)H+:

 N-H...Cl interaction

 no intra-ligand H-bond

• With BisAA(Me)H+:

 C-H... Cl interactions

 intra-ligand H-bonding

MonoAA(Me)H+ and BisAA(Me)H+ interact with 
chloride in different ways



Comparing Mono and Bis – Structures 
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• With MonoAA(Me)H+:

 both ligands have a N-H...anion 
interaction

 one amide O forms a H-bond with 
the aquo ligand 

 no intra-ligand H-bonds

• With BisAA(Me)H+:

 both ligand have C-H... anion 
interactions

 there is no aquo ligand to amide O 
H-bonding

 both ligands have intra-ligand H-
bonding

MonoAA(Me)H+ and BisAA(Me)H+ interact with 
[RhCl5(H2O)]2− in different ways



• MonoAA(Me)H+ and BisAA(Me)H+ have different anion binding sites

• This is likely due to differing numbers of possible intra-ligand H-bonds

 MonoAA(Me)H+ only has one potential H-bond  smaller energy penalty to disrupt

 BisAA(Me)H+ has two potential H-bonds  larger energy penalty to disrupt

MonoAA(Me)H+ binding site:

• N-H...anion interaction

• “Hard” interaction

• Favours binding of “hard” anions, 
e.g. chloride

Comparing Mono and Bis – Structures 
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BisAA(Me)H+ binding site:

• C-H...anion interaction

• “Soft” interaction

• Favour bindings of “soft” anions, 
e.g. [RhCl5(H2O)]2−



L  +  H3O+ ⇌ LH+ +  H2O                                                        Eq. 1.

L  +  Cl− +  H3O+ ⇌ LHCl +  H2O Eq. 2.

2L  +  [RhCl5(H2O)]2− +  2H3O+ ⇌ [(LH)2(RhCl5(H2O))]  +  2H2O Eq. 3.

2LHCl  +  [RhCl5(H2O)]2− ⇌ [(LH)2(RhCl5(H2O))]  +  2Cl− Eq. 4.

Comparing Mono and Bis – Energies 

• The following points can be 
summarised:
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Process Ligand
Gibbs Free Energy 

/ kJ mol−1 #

Eq. 1
Mono −116.4

Bis −117.5

Eq. 2
Mono −133.1

Bis −128.1

Eq. 3
Mono −250.6

Bis −259.5

Eq. 4
Mono 15.6

Bis −3.3

# M06/LANL2TZ,6-311+G**

PCM(SCRF, solvent=chloroform or water)

BSSE corrected for using Counterpoise
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More favourable association with 
chloride using MonoAA(Me)

= 
Rh extraction decreasing with 

increasing HCl concentration using 
MonoAA

More favourable association with Rh 
using BisAA(Me)

=
the extraction of Rh remaining high to 

start and only decreasing with much 
higher [HCl] using BisAA

Comparing Mono and Bis – Energies 
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Conclusions
• QM calculations have shown:

 protonated MonoAA(Me) and BisAA(Me) have different binding sites

 less competition with chloride using BisAA BisAA is a more selective extractant

 stronger association with [RhCl5(H2O)]2- using BisAA BisAA is a stronger extractant

QM modelling supports and rationalises the experimental results

• This mode of action study has provided important insight into the extraction 
mechanism

 This information can help design new reagents
27
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• QM calculations for the TrisAA(Me) systems

Ongoing work
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