Millisecond protein dynamics does not control catalysis in Cyclophilin A – evidence from molecular dynamics simulations

Pattama Wapeesittipan

PhD student

Julien Michel's group

Cyclophilin A (CypA)

CypA plays an essential role in protein folding and regulation, gene expression, cellular signaling and the immune system. It catalyzes the *cis/trans* isomerization of amide groups in **Proline** residues.

The catalytic mechanism of CypA

- The Catalytic mechanism of Cyclophylin A is due to the stabilization and preferential binding of the transition state.
- The hydrogen bonding interaction at the active site help to stabilize the transition state of substrate during catalysis
- The binding site of CypA has a very
 hydrophobic pocket which fit into the side
 chain ring of proline residue.

Catalysis & Enzyme Dynamics

Minor(χ_1 F113= -60°) = 'out' rotamer Major (χ_1 F113= +60°) = 'in' rotamer The previous NMR studies observed the millisecond internal motions of CypA during catalysis. These intrinsic motions is also observed in free enzyme characterized as 'major' and 'minor' states.

- The S99T mutant increased the population of this minor state
- The S99T mutant showed a 70-fold reduction in the bidrectional cis/trans isomerization rate of model substrate with respect to WT.

Methods

- Calculated the behavior of molecular system
- Based on the classical mechanics

'Major' and 'Minor' CypA Conformations Exchange

Nanosecond protein dynamics is sufficient to explain differential catalytic activity

Transition Destabilization in S99T Mutant

S99T decrease the transition state stabilization from the weaker electrostatic interaction with binding site

Decreased hydrogen-bonding interactions of S99T

S99T+AAPF

S99T increases fast dynamics of active site residues

substrate in S99T is due to an increased side chain flexibility of

active site residues.

Conclusion

- The fast conformational exchange of the S99T mutant from the minor to the major state was observed at a nanosecond time scale.
- Free energy profiles show an increase in activation energy for the S99T mutant to catalyze the isomerization reaction compared to that of the WT system.
- The decreased catalytic activity of the S99T mutant is a result of weakened hydrogen bonding interactions between Asn102 and the transition state conformations of the substrate.
- The weakened transition state stabilisation in S99T is due to an overall increase in fast (nanosecond) dynamics of active site residues.

Acknowledgements

Newbie

Newtonist

Jedi apprentice

Greek

energizer

aListery

Alchemist

Simulation

Dr.

Hipster Alchemist

Spin Doctor

Ninja

CycloPatlins

Fragment-ed

