Water Layers on Actinide Oxide Surfaces

Bengt Tegner Macgregor Group Heriot-Watt University

ScotCHEM Computational Chemistry Symposium 15th June 2018 University of St Andrews, Fife, Scotland

Outline

- Motivation and Method
- Water on Pristine AnO₂
- Water on Reduced AnO₂
- More Water Layers on AnO₂
- Summary and Conclusions
- Acknowledgements

Motivation

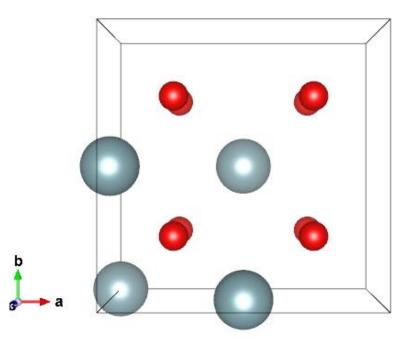
- The UK's stock of civil plutonium is stored as PuO₂ powder in multi layer steel cans in Sellafield.
- Under certain circumstances, gas generation may occur within the cans, with consequent pressurisation.
- Several proposed routes to gas production, including:
- (i) steam produced by H_2O desorption from hygroscopic PuO_2 due to self-heating
- (ii) radiolysis of adsorbed water
- (iii) generation of H_2 by reaction of PuO_2 with H_2O , producing a "postulated" PuO_{2+x} phase

 \Rightarrow Model the interaction of water on PuO₂ surfaces at the atomic level.

The University of Manchester

MANCHEST

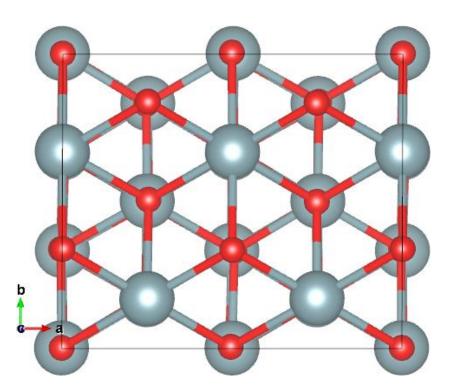
All involve PuO₂/H₂O interactions and are complex, interconnected and poorly understood



Computational Method

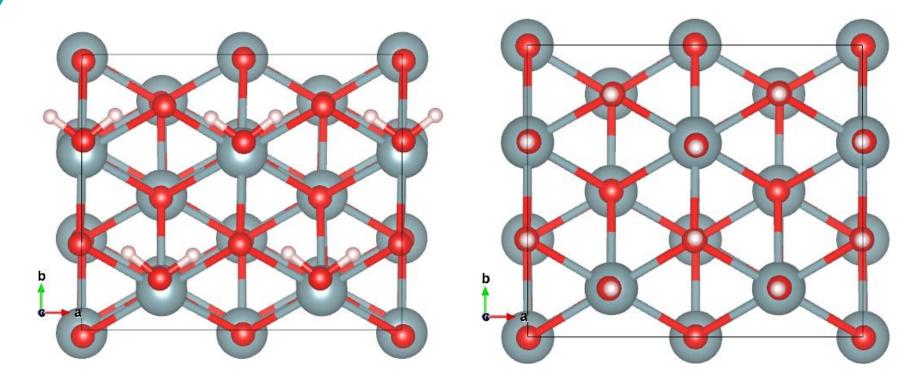
- Density Functional Theory
- VASP 5.4.1
- Plane wave basis set
- PAW-pseudopotentials
- k-point sampling of 1st Brillouin zone
- Spin-polarised
- DFT+U = PBE+U

•
$$U_{eff} = (U - J) = 4.0 \text{ eV}$$



Computational Method

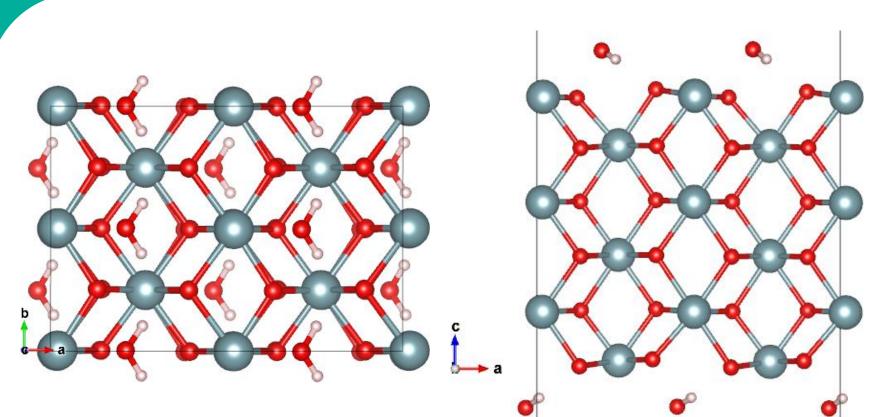
- Surfaces are modelled using a repeating slab of 24 AnO₂ units (An = U or Pu) with 18 Å of vacuum between each slab.
- Water is adsorbed on both sides of the slab to ensure the system has no net dipole moment.



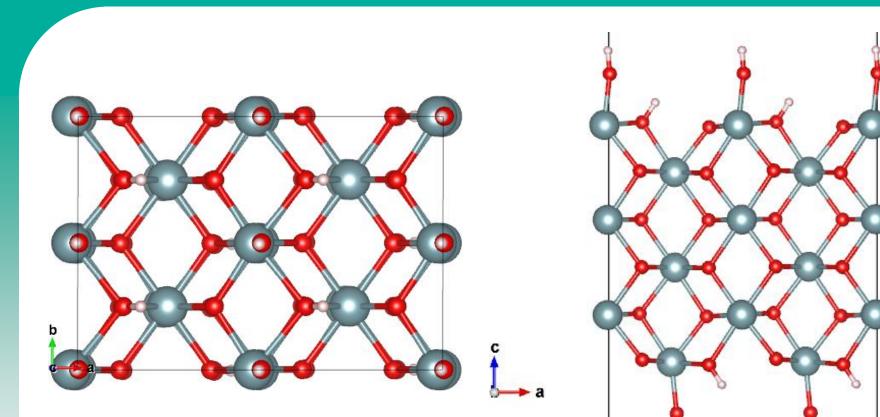
Water on Pristine AnO₂ (111)

Molecular

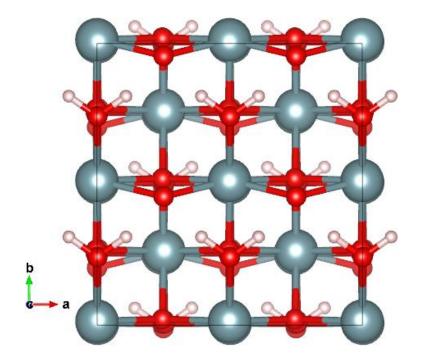
Dissociative

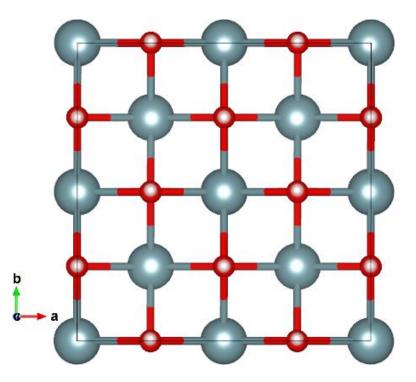

100% coverage = 1 Monolayer

Water on Pristine AnO₂ (110)


Molecular 100% Coverage = 1 Monolayer

Water on Pristine AnO₂ (110)


Dissociative 100% Coverage = 1 Monolayer



Water on Pristine AnO₂ (100)

Molecular

Dissociative

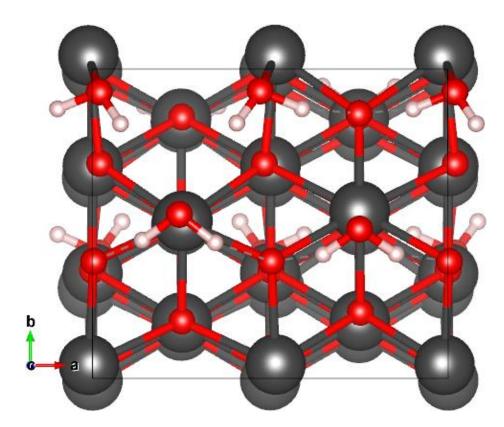
100% coverage = 1 Monolayer

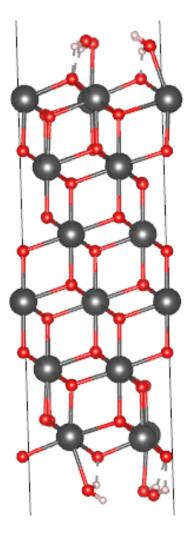
Water on Pristine AnO₂

- Results on the pristine AnO₂ (111), (110) and (100) surfaces suggest mixed (i.e. both molecular and dissociative) adsorption on the (111) surface, and dissociative adsorption on the (110) and (100) surfaces.
- Using these results we calculate water desorption temperatures for the most stable configurations on each surface at various pressures.
- These results have been written up and published in the Journal of Physical Chemistry C 121 (2017) 1675.

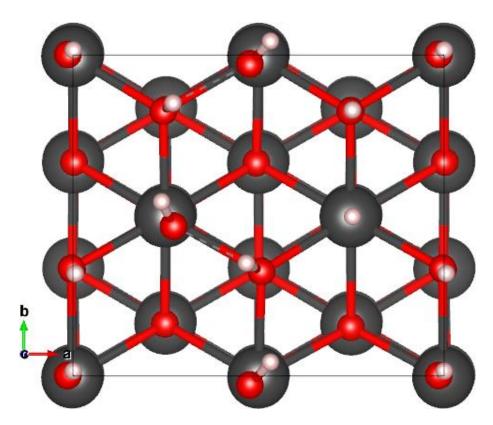
AnO₂ Surface Oxygen Vacancies

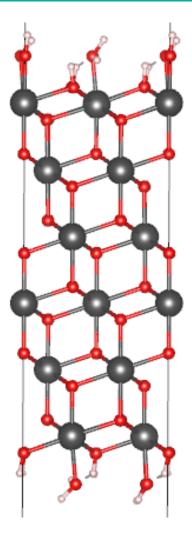
Oxygen vacancy formation energies in eV.


Surface	(111)	(110)	(100)	Bulk
UO ₂ (1 st O layer)	6.45	5.69	5.93	-
UO ₂ (2 nd O layer)	5.88	6.25	6.22	-
UO ₂ [1]	-	-	-	6.14
PuO ₂ (1 st O layer)	3.35	2.49	2.50	-
PuO ₂ (2 nd O layer)	3.40	2.75	3.27	-
PuO ₂ [2]	-	-	-	3.76


Water on Reduced AnO₂ (111)

Molecular 100% Coverage = 1 Monolayer

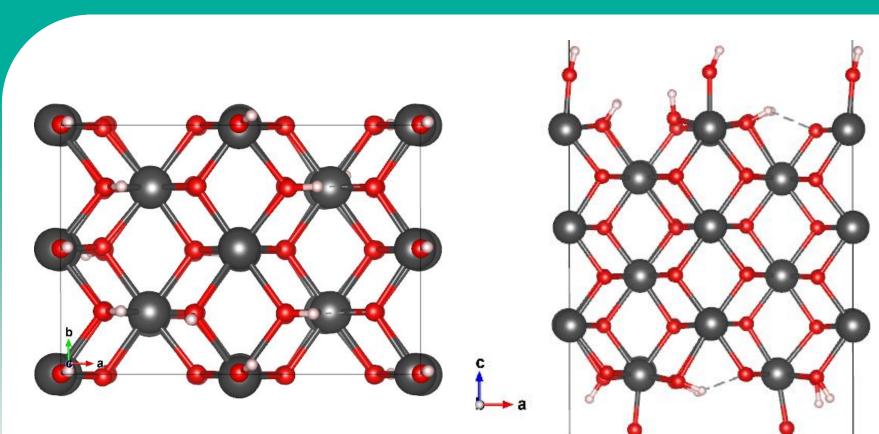


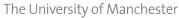

Water on Reduced AnO₂ (111)

Dissociative 100% Coverage = 1 Monolayer

Water on Reduced AnO₂ (111)

Adsorption energies in eV per water molecule.

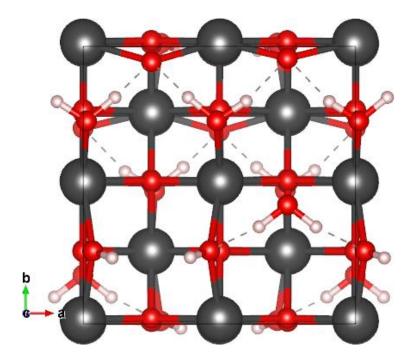

System	0.25 Monolayer	1.0 Monolayer
Pristine $UO_2 + H_2O$	-0.53	-0.49
Pristine $UO_2 + OH + H$	-0.50	-0.15
Reduced $UO_2 + H_2O$	-0.90	-0.66
Reduced $UO_2 + OH + H$	-2.23	-0.91
Pristine $PuO_2 + H_2O$	-0.40	-0.44
Pristine $PuO_2 + OH + H$	-0.32	-0.07
Reduced $PuO_2 + H_2O$	-0.60	-0.62
Reduced $PuO_2 + OH + H$	-2.10	-0.07

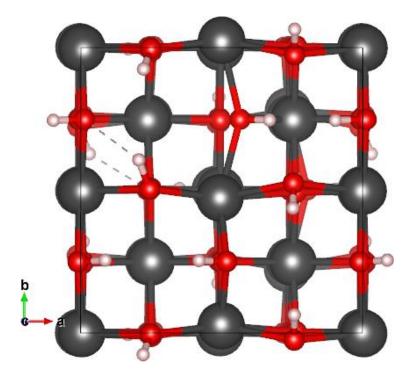

Water on Reduced AnO₂ (110)

Dissociative 100% Coverage = 1 Monolayer

Water on Reduced AnO₂ (110)

Adsorption energies in eV per water molecule.


System	0.25 Monolayer	1.0 Monolayer
Pristine $UO_2 + H_2O$	-0.93	-0.65
Pristine $UO_2 + OH + H$	-1.39	-1.00
Reduced $UO_2 + H_2O$	-0.82	-0.74
Reduced $UO_2 + OH + H$	-1.50	-1.01
Pristine $PuO_2 + H_2O$	-0.88	-0.39
Pristine $PuO_2 + OH + H$	-1.14	-0.91
Reduced $PuO_2 + H_2O$	-0.44	-0.75
Reduced $PuO_2 + OH + H$	-1.51	-1.10



Water on Reduced AnO₂ (100)

Molecular

Dissociative

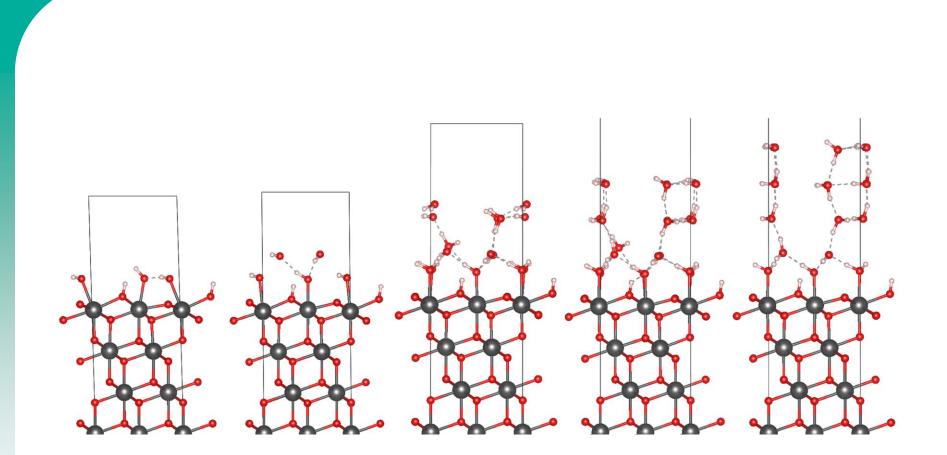
100% coverage = 1 Monolayer

Water on Reduced AnO₂ (100)

Adsorption energies in eV per water molecule.

System	0.25 Monolayer	1.0 Monolayer
Pristine $UO_2 + H_2O$	-0.97	-0.86
Pristine $UO_2 + OH + H$	-1.55	-1.01
Reduced $UO_2 + H_2O$	-1.62	-1.12
Reduced $UO_2 + OH + H$	-2.43	-1.78
Pristine $PuO_2 + H_2O$	-1.12	-0.95
Pristine $PuO_2 + OH + H$	-1.76	-1.37
Reduced $PuO_2 + H_2O$	-2.59	-1.29
Reduced $PuO_2 + OH + H$	-2.82	-1.31

Water on Reduced AnO₂


- It is energetically easier to form oxygen vacancies in PuO₂ compared with UO₂.
- Results on the reduced AnO₂ (111), (110) and (100) surfaces suggest a strong preference for dissociative adsorption on all three surfaces.
- Water might spontaneously dissociate near an oxygen vacancy on the (100) surface, potentially forming hydrogen gas.
- These results have been written up and published in the Journal of Physical Chemistry C **122** (2018) 7149.

More Water Layers on AnO₂ (111)

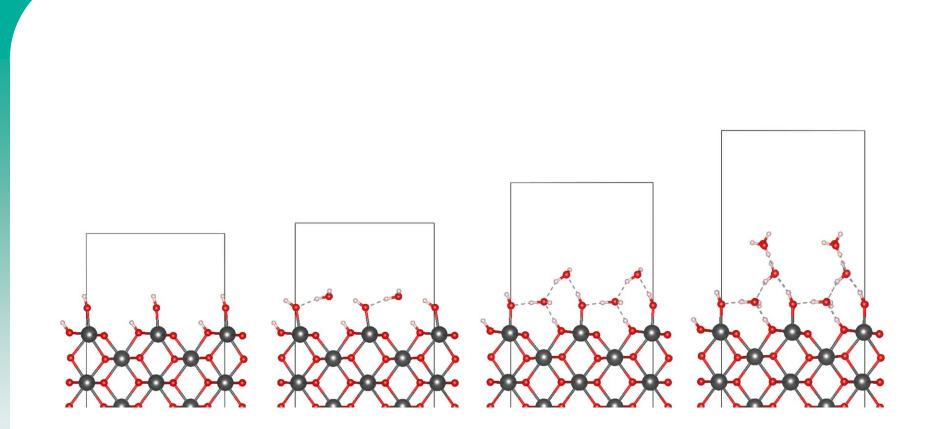
More Water Layers on AnO₂ (111)

Adsorption energies per layer in eV per water molecule.

System	1 st Layer: 100% H ₂ O, 50% / 50% H ₂ O / OH + H, or 100% OH + H	2 nd Layer: 100% H ₂ O	3 rd Layer: 100% H ₂ O	4 th Layer: 100% H ₂ O	5 th Layer: 100% H ₂ O
$PuO_2 + H_2O$	-0.45	-0.57	-0.65	-0.48	-0.65
PuO ₂ + 50% H ₂ O + 50% OH + H	-0.57	-0.06	-0.91	-0.59	-0.46
$PuO_2 + OH + H$	-0.17	-0.58	-0.38	-0.59	-0.77

More Water Layers on AnO₂ (111)

Average adsorption energies in eV per water molecule.


System	1 st Layer: 100% H ₂ O, 50% / 50% H ₂ O / OH + H, or 100% OH + H	2 nd Layer: 100% H ₂ O	3 rd Layer: 100% H ₂ O	4 th Layer: 100% H ₂ O	5 th Layer: 100% H ₂ O
$PuO_2 + H_2O$	-0.45	-0.51	-0.56	-0.54	-0.56
PuO ₂ + 50% H ₂ O + 50% OH + H	-0.57	-0.31	-0.51	-0.53	-0.52
$PuO_2 + OH + H$	-0.17	-0.38	-0.38	-0.43	-0.50

More Water Layers on AnO₂ (110)

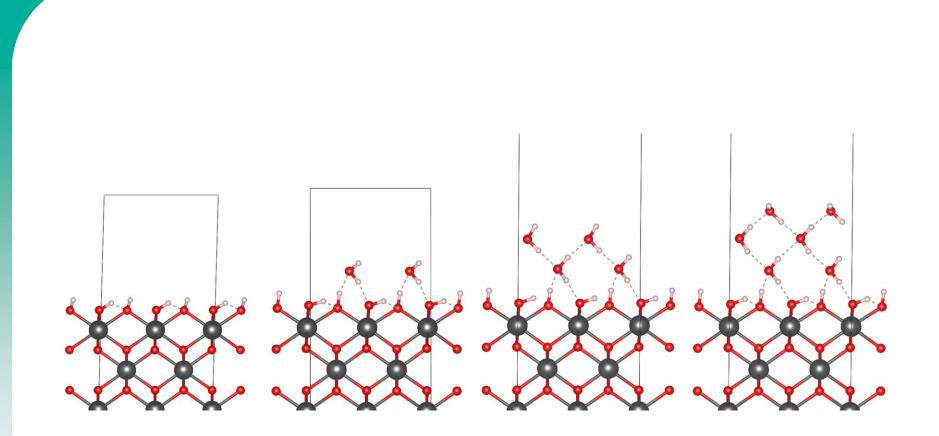
More Water Layers on AnO₂ (110)

Adsorption energies per layer in eV per water molecule.

System	1 st Layer: 100% H ₂ O or 100% OH + H	2 nd Layer: 100% H ₂ O	3 rd Layer: 100% H ₂ O	4 th Layer: 100% H ₂ O
$PuO_2 + H_2O$	-0.39	N/A	N/A	N/A
$PuO_2 + OH + H$	-0.91	-0.60	-0.44	-0.51

More Water Layers on AnO₂ (110)

Average adsorption energies in eV per water molecule.


System	1 st Layer: 100% H ₂ O or 100% OH + H	2 nd Layer: 100% H ₂ O	3 rd Layer: 100% H ₂ O	4 th Layer: 100% H ₂ O
$PuO_2 + H_2O$	-0.39	N/A	N/A	N/A
$PuO_2 + OH + H$	-0.91	-0.76	-0.65	-0.62

More Water Layers on AnO₂ (100)

More Water Layers on AnO₂ (100)

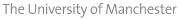
Adsorption energies per layer in eV per water molecule.

System	1 st Layer: 100% H ₂ O or 100% OH + H	2 nd Layer: 100% H ₂ O	3 rd Layer: 100% H ₂ O	4 th Layer: 100% H ₂ O
$PuO_2 + H_2O$	-0.95	N/A	N/A	N/A
$PuO_2 + OH + H$	-1.37	-0.52	-0.17	-0.79

More Water Layers on AnO₂ (100)

Average adsorption energies in eV per water molecule.

System	1 st Layer: 100% H ₂ O or 100% OH + H	2 nd Layer: 100% H ₂ O	3 rd Layer: 100% H ₂ O	4 th Layer: 100% H ₂ O
$PuO_2 + H_2O$	-0.95	N/A	N/A	N/A
$PuO_2 + OH + H$	-1.37	-0.94	-0.69	-0.72



Summary and Conclusions

- Results on the pristine AnO₂(111), (110) and (100) surfaces suggest mixed adsorption on the (111) surface and dissociative adsorption on the (110) and (100) surfaces.
- It is energetically easier to form oxygen vacancies in PuO₂ compared with UO₂.
- Adsorption at defects suggest a strong preference for dissociative adsorption on all three surfaces and may provide a mechanism for H₂ formation.
- Adsorption of additional water layers suggest a hydrogen bond network forming after just a few layers on all three surfaces.

Nik Kaltsoyannis, The University of Manchester Andy Kerridge, Lancaster University Marco Molinari, University of Huddersfield Steve Parker, University of Bath Jeff Hobbs and Helen Steele, Sellafield Ltd Robin Orr and Howard Sims, National Nuclear Laboratory

