Ab initio surface-hopping simulations of \(\text{CS}_2 \) photodissociation

Darren Bellshaw
Kirrander group, University of Edinburgh

ScotChem 2018
15/5/18
Excited state dynamics

- Photochemistry
 - Photosynthesis, bioluminescence
 - DNA damage avoidance

- Photovoltaics/OLEDs
 - Spin-orbit coupling

- Atmospheric chemistry
Nonadiabatic dynamics – challenge for theoreticians...

- Breakdown of BOA
- Must treat:
 - Electronic structure
 - Nuclear dynamics
 - Nonadiabatic effects
- Internal conversion (IC)
- Intersystem crossing (ISC)
Nuclear wavepacket approaches

- Fully quantum
- Pre-calculated potentials
- Limited DoF
- \textit{e.g.} MCTDH

Classical trajectory approaches

- Mixed quantum/classical
- “On-the-fly” potentials
- Fully-dimensional
- \textit{e.g.} \textit{Surface-hopping}

Trajectory surface hopping

- Quantum electrons, classical nuclei
 - “On-the-fly” potentials
 - Newtonian nuclear dynamics

- SHARC - accounts for nonadiabatic (IC) and spin-orbit coupling (ISC)

- Trajectories “hop” probabilistically

CS₂ photodissociation

\[CS_2 + h\nu \rightarrow CS(X) + \begin{cases} S(1D_1) \\ S(3P) \end{cases} \]
\[
CS_2 + h\nu \rightarrow CS(X) + \begin{cases}
S\left(^1D_1 \right) \\
S\left(^3P \right)
\end{cases}
\]

- Large spin-orbit (SO) coupling
CS₂ photodissociation

\[CS_2 + h\nu \rightarrow CS(X) + \begin{cases} S(1^D_1) \\ S(3^P) \end{cases} \]

- Large spin-orbit (SO) coupling

- **Simple reaction ≠ simple dynamics!**
 - Competing dissociation channels involving multiple electronic states
SHARC setup

<table>
<thead>
<tr>
<th>Simulation details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASSCF active space</td>
</tr>
<tr>
<td>Basis set</td>
</tr>
<tr>
<td>Coupling approach</td>
</tr>
<tr>
<td>Number of trajectories</td>
</tr>
<tr>
<td>Time step / total time (fs)</td>
</tr>
</tbody>
</table>
- Initial rapid redistribution
- Initial rapid redistribution
- Relaxation of bound curves
- Initial rapid redistribution
- Relaxation of bound curves
- Onset of dissociation
• *Ab initio* dependence...? Drop active space to (8,6).
Conclusions

• IC & ISC considered sequential...
 ... but not the case in some systems.
Conclusions

• IC & ISC considered sequential...
 ... but not the case in some systems.

• Simple system, complex dynamics!
Conclusions

• IC & ISC considered sequential...
 ... but not the case in some systems.

• Simple system, complex dynamics!

• Be wary of scrimping on computational expense!
Acknowledgements

Kirrander group (past and present)

- Dr Adam Kirrander
- Dr David Rodgers
- Dr Thomas Northey
- Dr Andres Moreno Carrascosa
- Nikola Zotev
- Dr Maria Tudorovskya
- Minas Stefanou
Thanks!

Duck & Birdie
know what matters in science
"very impressive, professor...,
but does it work in theory?"