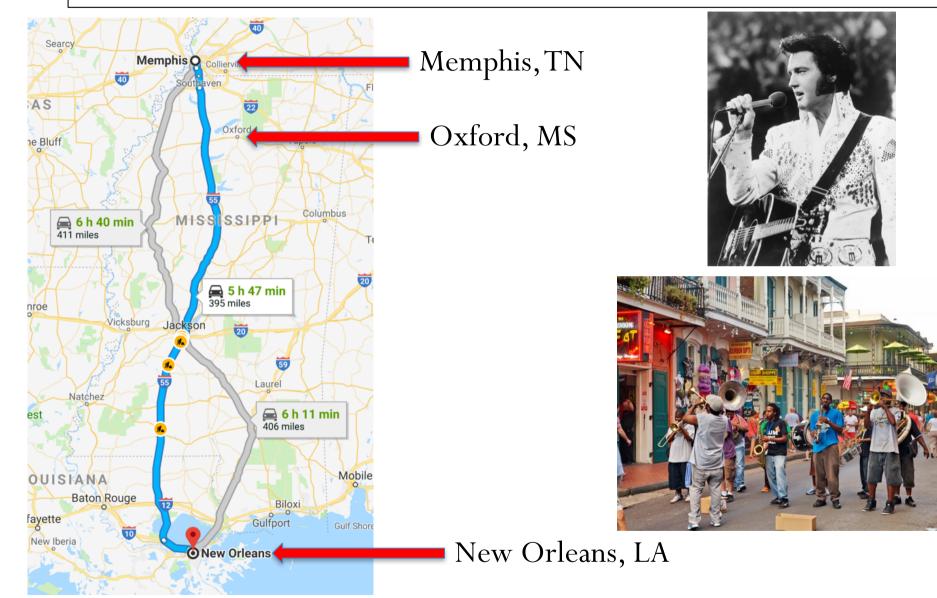
Big Electronic Structure Computations for Small Hydrated Anions


ScotCHEM 2018 Computational Chemistry Symposium

15 June 2018 Gregory S.Tschumper http://quantum.chem.olemiss.edu

Chemistry and Biochemistry

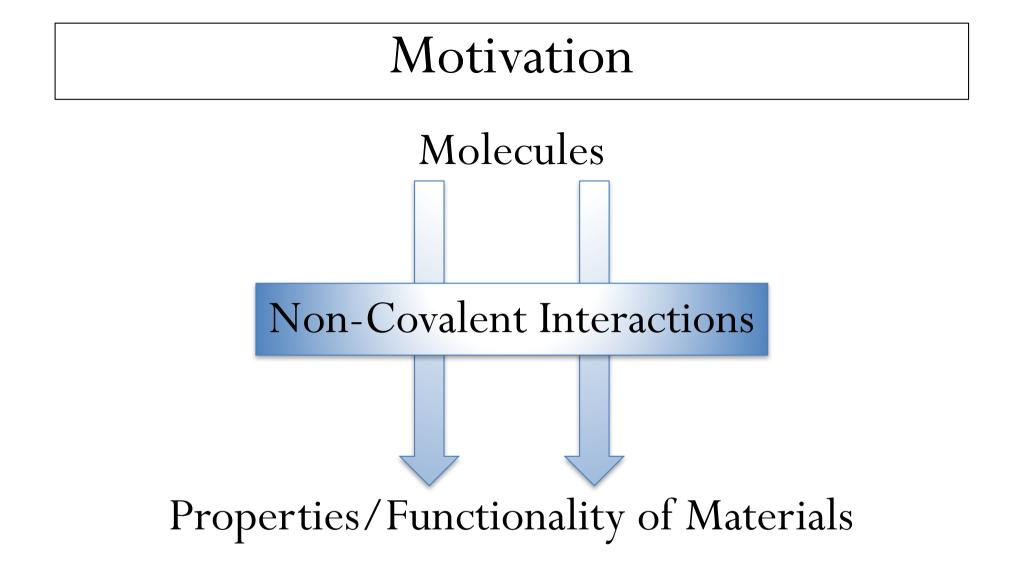
The "Other" Oxford

Chemistry and Biochemistry

Outline

Motivation and Background

2-body:Many-body QM:QM Frequencies

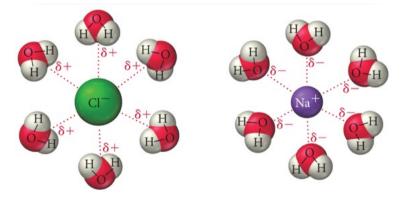

A Closer Look at $F^{-}(H_2O)_n$

➤ Conclusions

Acknowledgements

Chemistry and Biochemistry

Chemistry and Biochemistry



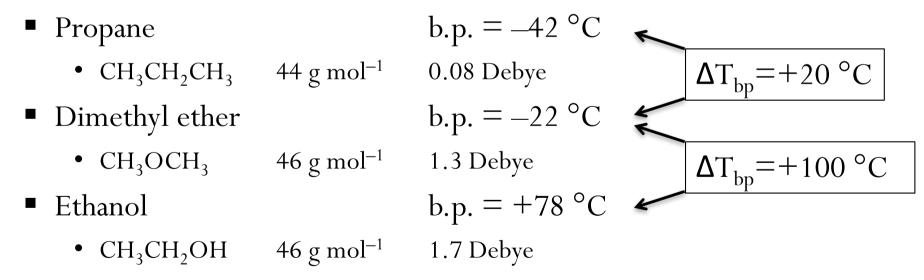
Motivation

► Non-covalent interactions

- Dipole/dipole interactions
- London dispersion forces
- σ-hole interactions

- Hydrogen bonding π -stacking
- Halogen bonding
- Integral role in chemistry, physics and biology
 - Structure and function of biomolecules and polymers
 - Solvation
 - Condensed phase properties
 - Crystal engineering
 - Directed self-assembly
 - Molecular recognition
 - Hydrophobic (and hydrophilic) effects

Hydrogen Bonding: A Familiar Example

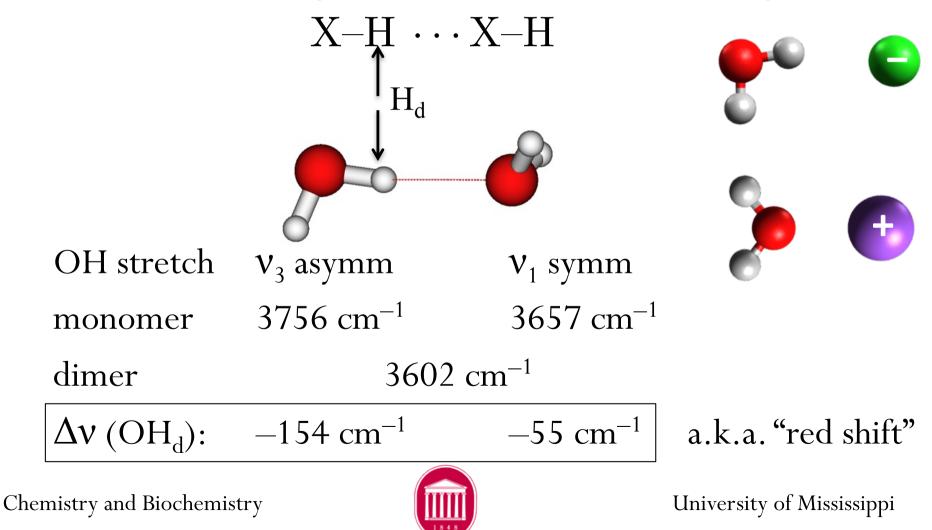

Strong and highly directional non-covalent interaction

• X = N, O, F, etc.

$$\delta - \delta + \delta - \delta + X - H$$

$$X = N, O, F, etc.$$

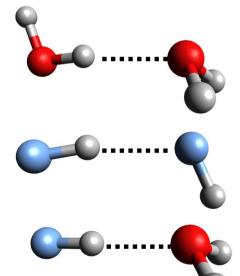
Much stronger than dipole/dipole interactions



University of Mississippi

Spectroscopic Signatures of H-bonding

Characteristic spectral signature


Donor stretching frequency shifts to lower energy

The Goal

	Donor Str	etch (cm ⁻¹)	Shif	$t(cm^{-1})$	D ₀ (kc	al mol ^{-1})
	Expt	Theory	Expt	Theory	Expt	Theory
$(H_2O)_2^*$	3602	3605	-55	-49	3.1	3.0
(HF) ₂ *	3868	3869	-93	-93	3.0	3.0
HF/H ₂ O [†]	3634	3636	-332	-333	8.2	6.3

*J.C. Howard, J.L. Gray, A.J. Hardwick, L.T. Nguyen and GST, J. Chem. Theory Comput., 10, 5426 (2014).

١

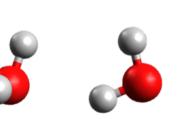
[†]T.M. Sexton, J.C. Howard and GST, J. Chem. Phys. A, **122**, 4902, (2018).

> CCSD(T)/haQZ + VPT2

> CCSD(T)/haQZ + VPT2

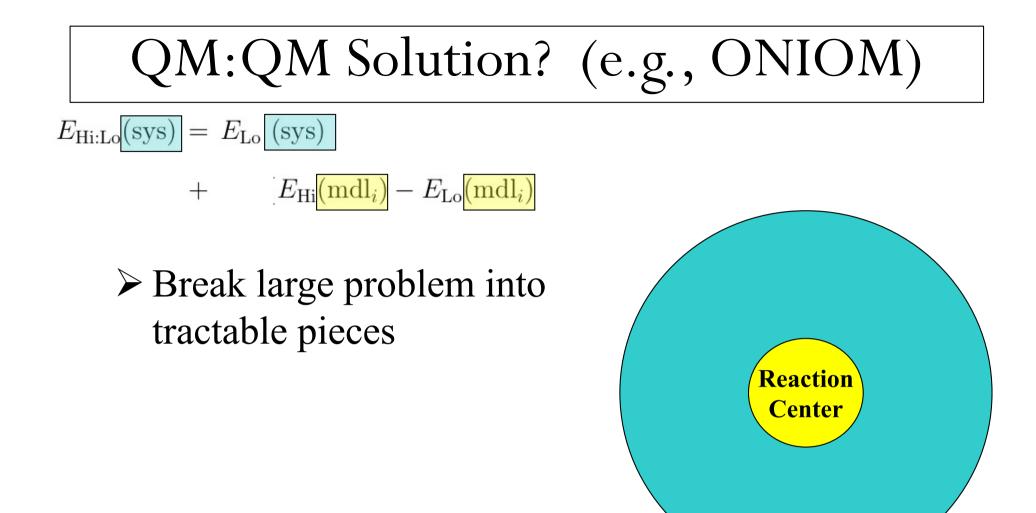
CCSD(T)/ha5Z harmonic

+ MP2/ha5Z VPT2 correction

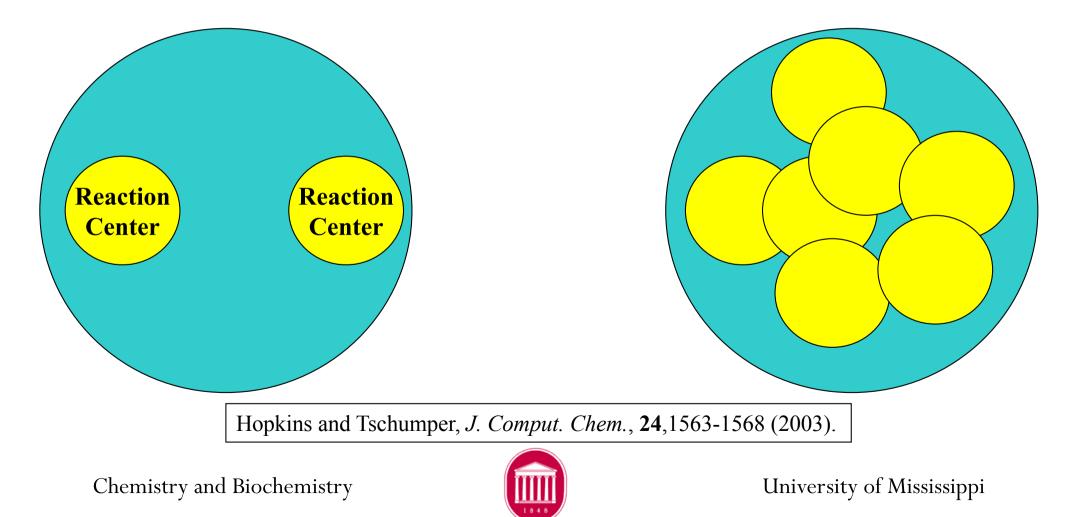

University of Mississippi

CCSD(T) Analytic Hessian Timing

Cluster	Symmetry	haTZ	haQZ
$F^{-}(H_2O)_1$	C_{s}	~1 hour	< 1 day
$F^{-}(H_2O)_2$	C ₁	several days	<1 month
$F^{-}(H_2O)_3$	C_3 (C_1)	several weeks	?
$F^{-}(H_2O)_4$	C_4 (C_2)	?	?


VPT2 requires 18n-5 Hessians for $X^{-}(H_2O)_n$

Chemistry and Biochemistry



University of Mississippi

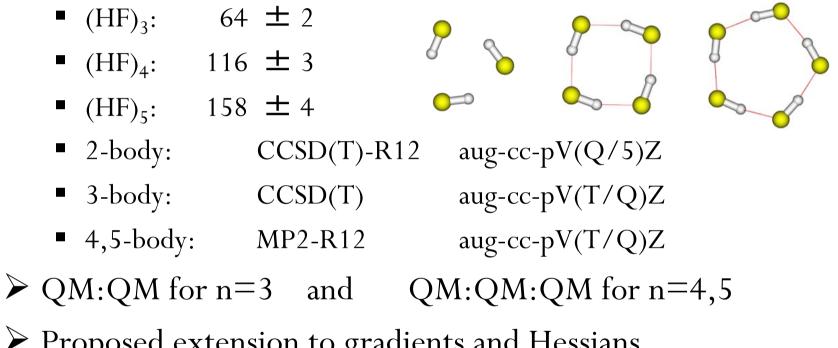
What about Multiple Centers?

$$E_{\text{Hi:Lo}}(\text{sys}) = E_{\text{Lo}} \text{ (sys)} + \sum_{i=1}^{m} \{E_{\text{Hi}}(\text{mdl}_i) - E_{\text{Lo}}(\text{mdl}_i)\}$$

Multicentered QM:QM (ONIOM)

$$E_{\text{Hi:Lo}}(\text{sys}) = E_{\text{Lo}} (\text{sys}) + \sum_{i=1}^{m} \{E_{\text{Hi}}(\text{mdl}_i) - E_{\text{Lo}}(\text{mdl}_i)\} - \sum_{i=1}^{m-1} \sum_{j>i}^{m} \{E_{\text{Hi}}(\text{mdl}_i \cap \text{mdl}_j) - E_{\text{Lo}}(\text{mdl}_i \cap \text{mdl}_j)\} + \sum_{i=1}^{m-2} \sum_{j>i}^{m-1} \sum_{k>j}^{m} \{E_{\text{Hi}}(\text{mdl}_i \cap \text{mdl}_j \cap \text{mdl}_k) - E_{\text{Lo}}(\text{mdl}_i \cap \text{mdl}_j \cap \text{mdl}_k)\} + \cdots$$

$$+ (-1)^{n-1} \sum_{i=1}^{m-n+1} \sum_{j>i}^{m-n+2} \cdots \sum_{l>k}^{m} \{ E_{\mathrm{Hi}}(\mathrm{mdl}_i \cap \cdots \cap \mathrm{mdl}_l) - E_{\mathrm{Lo}}(\mathrm{mdl}_i \cap \cdots \cap \mathrm{mdl}_l) \}$$


Hopkins and Tschumper, Mol. Phys., 103, 309 (2005).

Chemistry and Biochemistry

N-Body:Many-Body QM:QM

Many-body expansion (MBE) dominated by low-order terms \geq D_e in kJ mol⁻¹

Proposed extension to gradients and Hessians

Klopper, Quack and Suhm, Mol. Phys., 94, 105 (1998).

Chemistry and Biochemistry

2-body:Many-body QM:QM

Multi-centered ONIOM + Many-body expansion $E = E_1 + \Delta E_2 + \Delta E_3 + \Delta E_4 + \ldots + \Delta E_N$

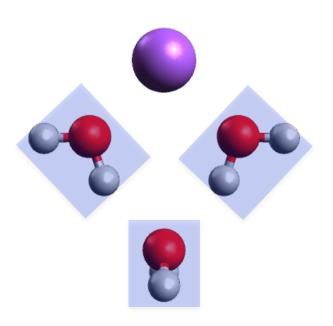
- Hi level: Up through 2-body interactions
- Lo level: 3-body and higher-order contributions

$$E_{\text{int}}^{2\text{bHi:Lo}} = E_{2\text{b int}}^{\text{Hi}} + \delta E_{\geq 3\text{b}}^{\text{Lo}}$$
$$= E_{2\text{b int}}^{\text{Hi}} + \delta E_{\text{non-add}}^{\text{Lo}}$$

CPL, **407**, 362-267 (2005) and *CPL*, **427**, 185-191 (2006).

Analytic gradients and Hessians
Systematic convergence (3b:Mb, 4b:Mb, etc.)

Chemistry and Biochemistry



2-Body:Many-Body QM:QM

➤ "Hi" level method: Up to 2-body interactions

- CCSD(T) for N fragments and $\binom{N}{2}$ dimers
- Up to 10 unique "pairs" for N=5

University of Mississippi

2-Body:Many-Body QM:QM

➤ "Hi" level method: Up to 2-body interactions

- CCSD(T) for N fragments and $\binom{N}{2}$ dimension
- Up to 10 unique "pairs" for N=5

➤"Lo" level method: ≥3-body interactions

MP2 for entire cluster

University of Mississippi

Similar Approaches

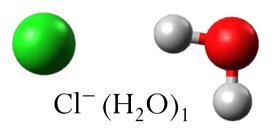
- ➢ Molecules-in-molecules (MIM)
 - Mayhall and Raghavachari, *JCTC*, **7**, 1336-1343 (2011)
- Stratified Approximation Many-Body Approach (SAMBA)
 - Góra, Podeszwa, Cenek and Szalewicz, *JCP*, **135**, 224102 (2011)
- > Many related methods targeting large systems

Very good reviews of fragmentation and MBE methods

- "Fragmentation Methods: A Route to Accurate Calculations on Large Systems", Gordon, Fedorov, Pruitt and Slipchenko, Chem. Rev. 112, 632-672 (2012)
- "A generalized many-body expansion and a unified view of fragment-based methods in electronic structure theory", Richard and Herbert, JCP, **137**, 064113 (2012)
- Special issue of *Acc. Chem. Res.* **47**, no. 9 (2014).
- Special issue of *Chem. Rev.*, **115**, no. 12 (2015).

Chemistry and Biochemistry

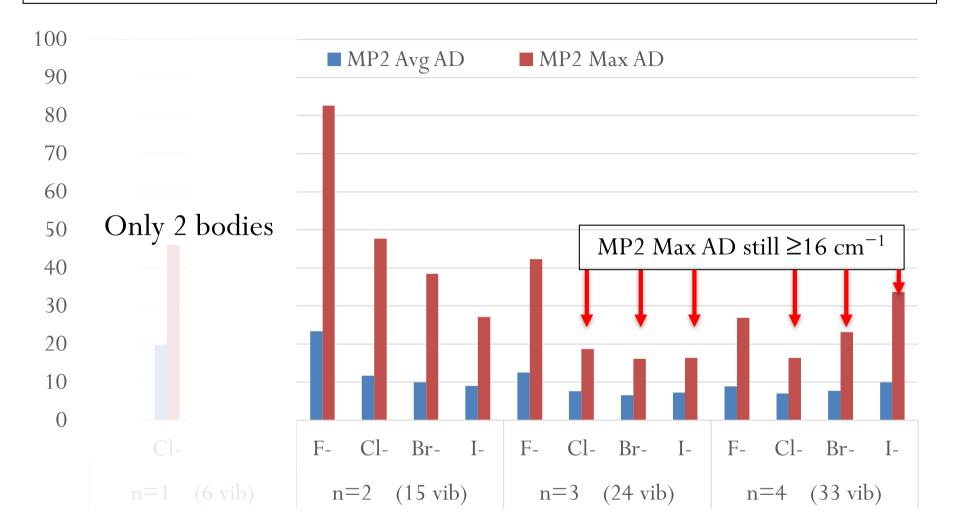
Properties for 2b:Mb, 3b:Mb, etc.


➢ Energies

- *Mol. Phys.*, **103**, 309 (2005)
- Chem. Phys. Lett., **427**, 185 (2006)
- J. Chem. Phys., 135, 044123 (2011)
- Analytic Gradients (geometry optimizations)
 - Mol. Phys., 105, 2777 (2008)
 - *JCTC*, **7**, 2753 (2011)
- ➢ Analytic Hessians (vibrational frequencies)
 - J. Chem. Phys., 139, 184113 (2013)

MP2 Deviations from CCSD(T)

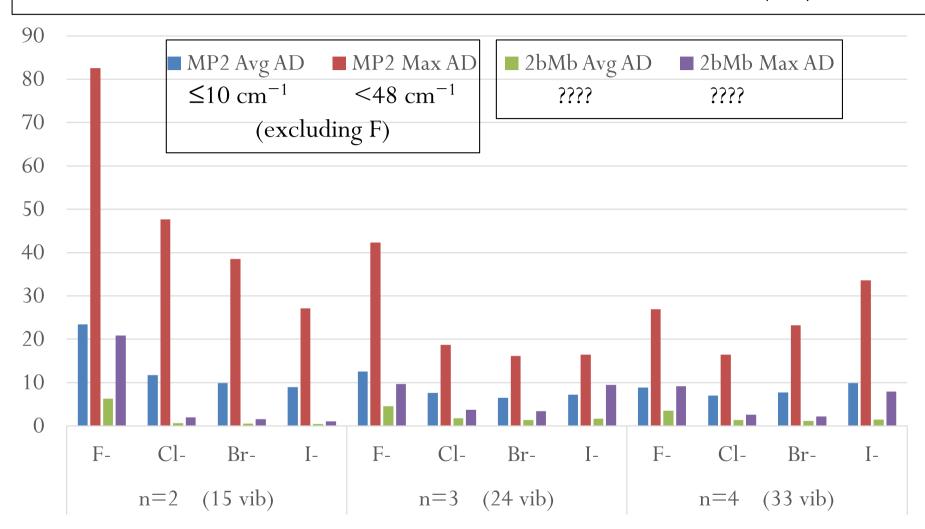
CCSD(T)	MP2	Deviation
176.9	180.9	-4.1
326.8	336.2	-9.4
720.3	734.2	-13.9
1692.1	1675.4	+16.7
3446.7	3400.8	+46.0
3866.6	3895.1	-28.5



All values computed with haDZ basis set and reported in cm^{-1} (cc-pVDZ for H and aug-cc-pVTZ for all other atoms)

Chemistry and Biochemistry

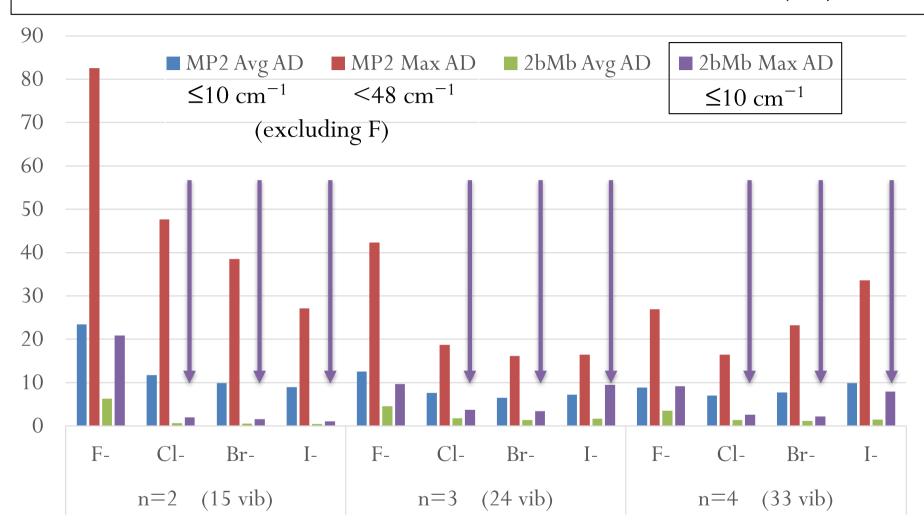
MP2 Deviations from CCSD(T)



All values computed with haDZ basis set and reported in cm^{-1}

Chemistry and Biochemistry

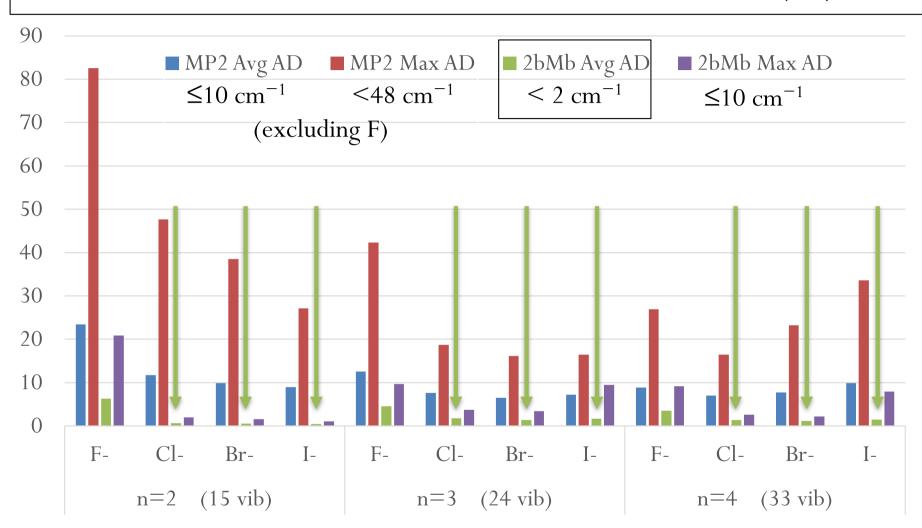
MP2 Deviations from CCSD(T)



All values computed with haDZ basis set and reported in cm^{-1}

Chemistry and Biochemistry

2b:Mb Deviations from CCSD(T)



All values computed with haDZ basis set and reported in cm^{-1}

Chemistry and Biochemistry

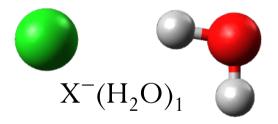
2b:Mb Deviations from CCSD(T)

All values computed with haDZ basis set and reported in cm^{-1}

Chemistry and Biochemistry

The F⁻ Problem: More Methods

► CFOUR and MRCC


- CCSD(T), CCSDT, CCSDT(Q), CCSDTQ
- Gradients and Hessians
 - Analytic when available
 - Finite difference procedures otherwise

The F⁻ Problem: D_e

	$CCSD(T) D_e$	MP2 D_e	Deviation
F ⁻	27.2	27.4	+0.2
Cl ⁻	15.0	14.7	-0.3
Br ⁻	13.3	13.1	-0.2
H^{-}	19.1	17.3	-1.8

All values computed with haTZ basis set and reported in kcal mol^{-1}

Chemistry and Biochemistry

CCSD(T)	MP2	Deviation
389.0	383.7	+5.3
576.9	575.2	+1.7
1171.7	1164.0	+7.7
1700.4	1723.9	-23.5
2114.0	2232.9	-118.9
3895.9	3861.1	+34.8
	Avg Abs Dev	32.0
	Max Abs Dev	118.9

All values computed with haTZ basis set and reported in cm^{-1}

Chemistry and Biochemistry

University of Mississippi

 $F^{-}(H_2O)_1$

Br ⁻	\mathbf{Cl}^{-}	F ⁻	
+3.4	+3.0	+5.3	$X^{-}(H_2O)_1$
+9.3	+8.8	+1.7	
+11.7	+12.2	+7.7	
-18.6	-18.5	-23.5	
-44.2	-53.3	-118.9	
+24.4	+25.9	+34.8	
18.6	20.3	32.0	Avg Abs Dev
44.2	53.3	118.9	Max Abs Dev

All values computed with haTZ basis set and reported in cm^{-1}

Br ⁻	Cl ⁻	F ⁻	H^{-}
+3.4	+3.0	+5.3	+56.9
+9.3	+8.8	+1.7	+44.8
+11.7	+12.2	+7.7	+98.4
-18.6	-18.5	-23.5	-20.3
-44.2	-53.3	-118.9	-376.5
+24.4	+25.9	+34.8	+20.0
18.6	20.3	32.0	102.8
44.2	53.3	118.9	376.5

All values computed with haTZ basis set and reported in cm^{-1}

$\delta^{ ext{CCSDTQ}}_{ ext{MP2}}$	$\delta^{\text{CCSDTQ}}_{\text{CCSD}(\mathrm{T})}$	$\boldsymbol{\delta}_{\mathrm{MP2}}^{\mathrm{CCSD}(\mathrm{T})}$	$\delta^{\mathrm{CCSD}(\mathrm{T})}_{\mathrm{MP2}}$
+56.2	-1.1	+57.3	+56.9
+51.8	-2.7	+54.5	+44.8
+99.0	-1.7	+100.7	+98.4
-17.0	+2.8	-19.7	-20.3
-366.1	+23.2	-389.2	-376.5
+35.5	+9.8	+25.6	+20.0
104.3	6.9	107.8	102.8
366.1	23.2	389.2	376.5

All values computed with aug-cc-pVDZ basis set and reported in $\rm cm^{-1}$

$\delta^{ ext{CCSDTQ}}_{ ext{MP2}}$	$\delta^{\text{CCSDTQ}}_{\text{CCSD}(\mathrm{T})}$	$\delta_{\text{CCSDTQ}}^{\text{CCSDTQ}}$	$\delta^{\text{CCSDTQ}}_{\text{CCSDT}(Q)}$
+56.2	-1.1	-0.5	+0.3
+51.8	-2.7	-0.9	+0.2
+99.0	-1.7	-1.3	+0.3
-17.0	+2.8	+1.9	-0.4
-366.1	+23.2	+14.9	-3.4
+35.5	+9.8	+7.5	+1.7
104.3	6.9	4.5	1.1
366.1	23.2	14.9	3.4

All values computed with aug-cc-pVDZ basis set and reported in $\rm cm^{-1}$

The H⁻ Solution: Frequencies

- Appear to converge
 - CCSDT(Q)
 - CCSDTQ

≻ What about F⁻?

$\delta_{\mathrm{MP2}}^{\mathrm{CCSD}(\mathrm{T})}$	$\delta^{ ext{CCSDT}(ext{Q})}_{ ext{MP2}}$	$\delta^{\text{CCSDT}(Q)}_{\text{CCSD}(T)}$	$\delta_{\text{CCSDT}}^{\text{CCSDT}(Q)}$
+2.8	+3.4	+0.6	-0.1
+0.3	+1.3	+1.0	+0.2
+6.0	+8.8	+2.8	+0.6
-20.8	-17.7	+3.1	+2.6
-100.2	-90.1	+10.0	+15.1
+37.9	+47.2	+9.3	+8.3
28.0	28.1	4.5	4.5
100.2	90.1	10.0	15.1

All values computed with haDZ basis set and reported in cm^{-1}

Conclusions

- $F^{-}(H_2O)_2$ is likely/effectively C_2
 - Even though a TS with CCSD(T)/haTZ and haQZ
- > MP2 struggles with frequencies for H⁻ and F⁻(H₂O)_n
 - Largest deviations for intramolecular modes
 - Especially the donor stretch
 - Poor choice for low-level method in QM:QM
- CCSD does not appear to be much/any better

Conclusions

► 2b:Mb CCSD(T):MP2

- Nearly identical to CCSD(T) for Cl⁻, Br⁻ and I⁻
- Cl⁻ and Br⁻: Max AD $< 3.5 \text{ cm}^{-1}$ for
- I⁻: $Max AD \leq 10 cm^{-1}$
- Largest deviations for lowest energy modes (need to test FD procedure)
- haQZ benchmark harmonic frequencies underway for a much more diverse set of structures

Future Directions

≥ 2b:Mb QM:QM for $H^{-}(H_2O)_n$ and $F^{-}(H_2O)_n$

- Hi level: CCSDT(Q)
- Lo level: CCSD(T)

Thank You

Mississippi Center for Supercomputing Research
 NSF: CHE-1460568, OIA-1430364, CHE-1664998

TSCHUMPER RESEARCH GROUP SUMMER 2017 http://quantum.chem.olemiss.edu

Chemistry and Biochemistry

